summaryrefslogtreecommitdiff
path: root/docs/source/auto_examples/plot_OT_conv.rst
blob: 039bbdb6a9cf6026def1042370e3a91e7b5c5915 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
.. _sphx_glr_auto_examples_plot_OT_conv.py:


==============================
1D Wasserstein barycenter demo
==============================


@author: rflamary




.. code-block:: pytb

    Traceback (most recent call last):
      File "/home/rflamary/.local/lib/python2.7/site-packages/sphinx_gallery/gen_rst.py", line 518, in execute_code_block
        exec(code_block, example_globals)
      File "<string>", line 86, in <module>
    TypeError: unsupported operand type(s) for *: 'float' and 'Mock'





.. code-block:: python


    import numpy as np
    import matplotlib.pylab as pl
    import ot
    from mpl_toolkits.mplot3d import Axes3D #necessary for 3d plot even if not used
    import scipy as sp
    import scipy.signal as sps
    #%% parameters

    n=10 # nb bins

    # bin positions
    x=np.arange(n,dtype=np.float64)

    xx,yy=np.meshgrid(x,x)


    xpos=np.hstack((xx.reshape(-1,1),yy.reshape(-1,1)))

    M=ot.dist(xpos)


    I0=((xx-5)**2+(yy-5)**2<3**2)*1.0
    I1=((xx-7)**2+(yy-7)**2<3**2)*1.0

    I0/=I0.sum()
    I1/=I1.sum()

    i0=I0.ravel()
    i1=I1.ravel()

    M=M[i0>0,:][:,i1>0].copy()
    i0=i0[i0>0]
    i1=i1[i1>0]
    Itot=np.concatenate((I0[:,:,np.newaxis],I1[:,:,np.newaxis]),2)


    #%% plot the distributions

    pl.figure(1)
    pl.subplot(2,2,1)
    pl.imshow(I0)
    pl.subplot(2,2,2)
    pl.imshow(I1)


    #%% barycenter computation

    alpha=0.5 # 0<=alpha<=1
    weights=np.array([1-alpha,alpha])


    def conv2(I,k):
        return sp.ndimage.convolve1d(sp.ndimage.convolve1d(I,k,axis=1),k,axis=0)

    def conv2n(I,k):
        res=np.zeros_like(I)
        for i in range(I.shape[2]):
            res[:,:,i]=conv2(I[:,:,i],k)
        return res


    def get_1Dkernel(reg,thr=1e-16,wmax=1024):
        w=max(min(wmax,2*int((-np.log(thr)*reg)**(.5))),3)
        x=np.arange(w,dtype=np.float64)
        return np.exp(-((x-w/2)**2)/reg)
    
    thr=1e-16
    reg=1e0

    k=get_1Dkernel(reg)
    pl.figure(2)
    pl.plot(k)

    I05=conv2(I0,k)

    pl.figure(1)
    pl.subplot(2,2,1)
    pl.imshow(I0)
    pl.subplot(2,2,2)
    pl.imshow(I05)

    #%%

    G=ot.emd(i0,i1,M)
    r0=np.sum(M*G)

    reg=1e-1
    Gs=ot.bregman.sinkhorn_knopp(i0,i1,M,reg=reg)
    rs=np.sum(M*Gs)

    #%%

    def mylog(u):
        tmp=np.log(u)
        tmp[np.isnan(tmp)]=0
        return tmp

    def sinkhorn_conv(a,b, reg, numItermax = 1000, stopThr=1e-9, verbose=False, log=False,**kwargs):


        a=np.asarray(a,dtype=np.float64)
        b=np.asarray(b,dtype=np.float64)
        
    
        if len(b.shape)>2:
            nbb=b.shape[2]
            a=a[:,:,np.newaxis]
        else:
            nbb=0
    

        if log:
            log={'err':[]}

        # we assume that no distances are null except those of the diagonal of distances
        if nbb:
            u = np.ones((a.shape[0],a.shape[1],nbb))/(np.prod(a.shape[:2]))
            v = np.ones((a.shape[0],a.shape[1],nbb))/(np.prod(b.shape[:2]))
            a0=1.0/(np.prod(b.shape[:2]))
        else:
            u = np.ones((a.shape[0],a.shape[1]))/(np.prod(a.shape[:2]))
            v = np.ones((a.shape[0],a.shape[1]))/(np.prod(b.shape[:2]))
            a0=1.0/(np.prod(b.shape[:2]))
        
        
        k=get_1Dkernel(reg)
    
        if nbb:
            K=lambda I: conv2n(I,k)
        else:
            K=lambda I: conv2(I,k)

        cpt = 0
        err=1
        while (err>stopThr and cpt<numItermax):
            uprev = u
            vprev = v
        
            v = np.divide(b, K(u))
            u = np.divide(a, K(v))

            if (np.any(np.isnan(u)) or np.any(np.isnan(v)) 
                or np.any(np.isinf(u)) or np.any(np.isinf(v))):
                # we have reached the machine precision
                # come back to previous solution and quit loop
                print('Warning: numerical errors at iteration', cpt)
                u = uprev
                v = vprev
                break
            if cpt%10==0:
                # we can speed up the process by checking for the error only all the 10th iterations

                err = np.sum((u-uprev)**2)/np.sum((u)**2)+np.sum((v-vprev)**2)/np.sum((v)**2)

                if log:
                    log['err'].append(err)

                if verbose:
                    if cpt%200 ==0:
                        print('{:5s}|{:12s}'.format('It.','Err')+'\n'+'-'*19)
                    print('{:5d}|{:8e}|'.format(cpt,err))
            cpt = cpt +1
        if log:
            log['u']=u
            log['v']=v
        
        if nbb: #return only loss 
            res=np.zeros((nbb))
            for i in range(nbb):
                res[i]=np.sum(u[:,i].reshape((-1,1))*K*v[:,i].reshape((1,-1))*M)
            if log:
                return res,log
            else:
                return res        
        
        else: # return OT matrix
            res=reg*a0*np.sum(a*mylog(u+(u==0))+b*mylog(v+(v==0)))
            if log:
            
                return res,log
            else:
                return res

    reg=1e0
    r,log=sinkhorn_conv(I0,I1,reg,verbose=True,log=True)
    a=I0
    b=I1
    u=log['u']
    v=log['v']
    #%% barycenter interpolation

**Total running time of the script:** ( 0 minutes  0.000 seconds)



.. container:: sphx-glr-footer


  .. container:: sphx-glr-download

     :download:`Download Python source code: plot_OT_conv.py <plot_OT_conv.py>`



  .. container:: sphx-glr-download

     :download:`Download Jupyter notebook: plot_OT_conv.ipynb <plot_OT_conv.ipynb>`

.. rst-class:: sphx-glr-signature

    `Generated by Sphinx-Gallery <http://sphinx-gallery.readthedocs.io>`_