summaryrefslogtreecommitdiff
path: root/docs/source/auto_examples/plot_barycenter_fgw.py
blob: 77b0370891b81260064f33eb878b74d3854dbb57 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# -*- coding: utf-8 -*-
"""
=================================
Plot graphs' barycenter using FGW
=================================

This example illustrates the computation barycenter of labeled graphs using FGW

Requires networkx >=2

.. [18] Vayer Titouan, Chapel Laetitia, Flamary R{\'e}mi, Tavenard Romain
      and Courty Nicolas
    "Optimal Transport for structured data with application on graphs"
    International Conference on Machine Learning (ICML). 2019.

"""

# Author: Titouan Vayer <titouan.vayer@irisa.fr>
#
# License: MIT License

#%% load libraries
import numpy as np
import matplotlib.pyplot as plt
import networkx as nx
import math
from scipy.sparse.csgraph import shortest_path
import matplotlib.colors as mcol
from matplotlib import cm
from ot.gromov import fgw_barycenters
#%% Graph functions


def find_thresh(C, inf=0.5, sup=3, step=10):
    """ Trick to find the adequate thresholds from where value of the C matrix are considered close enough to say that nodes are connected
        Tthe threshold is found by a linesearch between values "inf" and "sup" with "step" thresholds tested.
        The optimal threshold is the one which minimizes the reconstruction error between the shortest_path matrix coming from the thresholded adjency matrix
        and the original matrix.
    Parameters
    ----------
    C : ndarray, shape (n_nodes,n_nodes)
            The structure matrix to threshold
    inf : float
          The beginning of the linesearch
    sup : float
          The end of the linesearch
    step : integer
            Number of thresholds tested
    """
    dist = []
    search = np.linspace(inf, sup, step)
    for thresh in search:
        Cprime = sp_to_adjency(C, 0, thresh)
        SC = shortest_path(Cprime, method='D')
        SC[SC == float('inf')] = 100
        dist.append(np.linalg.norm(SC - C))
    return search[np.argmin(dist)], dist


def sp_to_adjency(C, threshinf=0.2, threshsup=1.8):
    """ Thresholds the structure matrix in order to compute an adjency matrix.
    All values between threshinf and threshsup are considered representing connected nodes and set to 1. Else are set to 0
    Parameters
    ----------
    C : ndarray, shape (n_nodes,n_nodes)
        The structure matrix to threshold
    threshinf : float
        The minimum value of distance from which the new value is set to 1
    threshsup : float
        The maximum value of distance from which the new value is set to 1
    Returns
    -------
    C : ndarray, shape (n_nodes,n_nodes)
        The threshold matrix. Each element is in {0,1}
    """
    H = np.zeros_like(C)
    np.fill_diagonal(H, np.diagonal(C))
    C = C - H
    C = np.minimum(np.maximum(C, threshinf), threshsup)
    C[C == threshsup] = 0
    C[C != 0] = 1

    return C


def build_noisy_circular_graph(N=20, mu=0, sigma=0.3, with_noise=False, structure_noise=False, p=None):
    """ Create a noisy circular graph
    """
    g = nx.Graph()
    g.add_nodes_from(list(range(N)))
    for i in range(N):
        noise = float(np.random.normal(mu, sigma, 1))
        if with_noise:
            g.add_node(i, attr_name=math.sin((2 * i * math.pi / N)) + noise)
        else:
            g.add_node(i, attr_name=math.sin(2 * i * math.pi / N))
        g.add_edge(i, i + 1)
        if structure_noise:
            randomint = np.random.randint(0, p)
            if randomint == 0:
                if i <= N - 3:
                    g.add_edge(i, i + 2)
                if i == N - 2:
                    g.add_edge(i, 0)
                if i == N - 1:
                    g.add_edge(i, 1)
    g.add_edge(N, 0)
    noise = float(np.random.normal(mu, sigma, 1))
    if with_noise:
        g.add_node(N, attr_name=math.sin((2 * N * math.pi / N)) + noise)
    else:
        g.add_node(N, attr_name=math.sin(2 * N * math.pi / N))
    return g


def graph_colors(nx_graph, vmin=0, vmax=7):
    cnorm = mcol.Normalize(vmin=vmin, vmax=vmax)
    cpick = cm.ScalarMappable(norm=cnorm, cmap='viridis')
    cpick.set_array([])
    val_map = {}
    for k, v in nx.get_node_attributes(nx_graph, 'attr_name').items():
        val_map[k] = cpick.to_rgba(v)
    colors = []
    for node in nx_graph.nodes():
        colors.append(val_map[node])
    return colors

##############################################################################
# Generate data
# -------------

#%% circular dataset
# We build a dataset of noisy circular graphs.
# Noise is added on the structures by random connections and on the features by gaussian noise.


np.random.seed(30)
X0 = []
for k in range(9):
    X0.append(build_noisy_circular_graph(np.random.randint(15, 25), with_noise=True, structure_noise=True, p=3))

##############################################################################
# Plot data
# ---------

#%% Plot graphs

plt.figure(figsize=(8, 10))
for i in range(len(X0)):
    plt.subplot(3, 3, i + 1)
    g = X0[i]
    pos = nx.kamada_kawai_layout(g)
    nx.draw(g, pos=pos, node_color=graph_colors(g, vmin=-1, vmax=1), with_labels=False, node_size=100)
plt.suptitle('Dataset of noisy graphs. Color indicates the label', fontsize=20)
plt.show()

##############################################################################
# Barycenter computation
# ----------------------

#%% We compute the barycenter using FGW. Structure matrices are computed using the shortest_path distance in the graph
# Features distances are the euclidean distances
Cs = [shortest_path(nx.adjacency_matrix(x)) for x in X0]
ps = [np.ones(len(x.nodes())) / len(x.nodes()) for x in X0]
Ys = [np.array([v for (k, v) in nx.get_node_attributes(x, 'attr_name').items()]).reshape(-1, 1) for x in X0]
lambdas = np.array([np.ones(len(Ys)) / len(Ys)]).ravel()
sizebary = 15  # we choose a barycenter with 15 nodes

A, C, log = fgw_barycenters(sizebary, Ys, Cs, ps, lambdas, alpha=0.95, log=True)

##############################################################################
# Plot Barycenter
# -------------------------

#%% Create the barycenter
bary = nx.from_numpy_matrix(sp_to_adjency(C, threshinf=0, threshsup=find_thresh(C, sup=100, step=100)[0]))
for i, v in enumerate(A.ravel()):
    bary.add_node(i, attr_name=v)

#%%
pos = nx.kamada_kawai_layout(bary)
nx.draw(bary, pos=pos, node_color=graph_colors(bary, vmin=-1, vmax=1), with_labels=False)
plt.suptitle('Barycenter', fontsize=20)
plt.show()