summaryrefslogtreecommitdiff
path: root/docs/source/auto_examples/plot_barycenter_lp_vs_entropic.rst
blob: bd1c7101278411632a2c0c879fe32bd5f8834947 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
.. _sphx_glr_auto_examples_plot_barycenter_lp_vs_entropic.py:


=================================================================================
1D Wasserstein barycenter comparison between exact LP and entropic regularization
=================================================================================

This example illustrates the computation of regularized Wasserstein Barycenter
as proposed in [3] and exact LP barycenters using standard LP solver.

It reproduces approximately Figure 3.1 and 3.2 from the following paper:
Cuturi, M., & Peyré, G. (2016). A smoothed dual approach for variational
Wasserstein problems. SIAM Journal on Imaging Sciences, 9(1), 320-343.

[3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G. (2015).
Iterative Bregman projections for regularized transportation problems
SIAM Journal on Scientific Computing, 37(2), A1111-A1138.




.. code-block:: python


    # Author: Remi Flamary <remi.flamary@unice.fr>
    #
    # License: MIT License

    import numpy as np
    import matplotlib.pylab as pl
    import ot
    # necessary for 3d plot even if not used
    from mpl_toolkits.mplot3d import Axes3D  # noqa
    from matplotlib.collections import PolyCollection  # noqa

    #import ot.lp.cvx as cvx







Gaussian Data
-------------



.. code-block:: python


    #%% parameters

    problems = []

    n = 100  # nb bins

    # bin positions
    x = np.arange(n, dtype=np.float64)

    # Gaussian distributions
    # Gaussian distributions
    a1 = ot.datasets.make_1D_gauss(n, m=20, s=5)  # m= mean, s= std
    a2 = ot.datasets.make_1D_gauss(n, m=60, s=8)

    # creating matrix A containing all distributions
    A = np.vstack((a1, a2)).T
    n_distributions = A.shape[1]

    # loss matrix + normalization
    M = ot.utils.dist0(n)
    M /= M.max()


    #%% plot the distributions

    pl.figure(1, figsize=(6.4, 3))
    for i in range(n_distributions):
        pl.plot(x, A[:, i])
    pl.title('Distributions')
    pl.tight_layout()

    #%% barycenter computation

    alpha = 0.5  # 0<=alpha<=1
    weights = np.array([1 - alpha, alpha])

    # l2bary
    bary_l2 = A.dot(weights)

    # wasserstein
    reg = 1e-3
    ot.tic()
    bary_wass = ot.bregman.barycenter(A, M, reg, weights)
    ot.toc()


    ot.tic()
    bary_wass2 = ot.lp.barycenter(A, M, weights, solver='interior-point', verbose=True)
    ot.toc()

    pl.figure(2)
    pl.clf()
    pl.subplot(2, 1, 1)
    for i in range(n_distributions):
        pl.plot(x, A[:, i])
    pl.title('Distributions')

    pl.subplot(2, 1, 2)
    pl.plot(x, bary_l2, 'r', label='l2')
    pl.plot(x, bary_wass, 'g', label='Reg Wasserstein')
    pl.plot(x, bary_wass2, 'b', label='LP Wasserstein')
    pl.legend()
    pl.title('Barycenters')
    pl.tight_layout()

    problems.append([A, [bary_l2, bary_wass, bary_wass2]])




.. rst-class:: sphx-glr-horizontal


    *

      .. image:: /auto_examples/images/sphx_glr_plot_barycenter_lp_vs_entropic_001.png
            :scale: 47

    *

      .. image:: /auto_examples/images/sphx_glr_plot_barycenter_lp_vs_entropic_002.png
            :scale: 47


.. rst-class:: sphx-glr-script-out

 Out::

    Elapsed time : 0.010712385177612305 s
    Primal Feasibility  Dual Feasibility    Duality Gap         Step             Path Parameter      Objective          
    1.0                 1.0                 1.0                 -                1.0                 1700.336700337      
    0.006776453137632   0.006776453137633   0.006776453137633   0.9932238647293  0.006776453137633   125.6700527543      
    0.004018712867874   0.004018712867874   0.004018712867874   0.4301142633     0.004018712867874   12.26594150093      
    0.001172775061627   0.001172775061627   0.001172775061627   0.7599932455029  0.001172775061627   0.3378536968897     
    0.0004375137005385  0.0004375137005385  0.0004375137005385  0.6422331807989  0.0004375137005385  0.1468420566358     
    0.000232669046734   0.0002326690467341  0.000232669046734   0.5016999460893  0.000232669046734   0.09381703231432    
    7.430121674303e-05  7.430121674303e-05  7.430121674303e-05  0.7035962305812  7.430121674303e-05  0.0577787025717     
    5.321227838876e-05  5.321227838875e-05  5.321227838876e-05  0.308784186441   5.321227838876e-05  0.05266249477203    
    1.990900379199e-05  1.990900379196e-05  1.990900379199e-05  0.6520472013244  1.990900379199e-05  0.04526054405519    
    6.305442046799e-06  6.30544204682e-06   6.3054420468e-06    0.7073953304075  6.305442046798e-06  0.04237597591383    
    2.290148391577e-06  2.290148391582e-06  2.290148391578e-06  0.6941812711492  2.29014839159e-06   0.041522849321      
    1.182864875387e-06  1.182864875406e-06  1.182864875427e-06  0.508455204675   1.182864875445e-06  0.04129461872827    
    3.626786381529e-07  3.626786382468e-07  3.626786382923e-07  0.7101651572101  3.62678638267e-07   0.04113032448923    
    1.539754244902e-07  1.539754249276e-07  1.539754249356e-07  0.6279322066282  1.539754253892e-07  0.04108867636379    
    5.193221323143e-08  5.193221463044e-08  5.193221462729e-08  0.6843453436759  5.193221708199e-08  0.04106859618414    
    1.888205054507e-08  1.888204779723e-08  1.88820477688e-08   0.6673444085651  1.888205650952e-08  0.041062141752      
    5.676855206925e-09  5.676854518888e-09  5.676854517651e-09  0.7281705804232  5.676885442702e-09  0.04105958648713    
    3.501157668218e-09  3.501150243546e-09  3.501150216347e-09  0.414020345194   3.501164437194e-09  0.04105916265261    
    1.110594251499e-09  1.110590786827e-09  1.11059083379e-09   0.6998954759911  1.110636623476e-09  0.04105870073485    
    5.770971626386e-10  5.772456113791e-10  5.772456200156e-10  0.4999769658132  5.77013379477e-10   0.04105859769135    
    1.535218204536e-10  1.536993317032e-10  1.536992771966e-10  0.7516471627141  1.536205005991e-10  0.04105851679958    
    6.724209350756e-11  6.739211232927e-11  6.739210470901e-11  0.5944802416166  6.735465384341e-11  0.04105850033766    
    1.743382199199e-11  1.736445896691e-11  1.736448490761e-11  0.7573407808104  1.734254328931e-11  0.04105849088824    
    Optimization terminated successfully.
    Elapsed time : 2.883899211883545 s


Dirac Data
----------



.. code-block:: python


    #%% parameters

    a1 = 1.0 * (x > 10) * (x < 50)
    a2 = 1.0 * (x > 60) * (x < 80)

    a1 /= a1.sum()
    a2 /= a2.sum()

    # creating matrix A containing all distributions
    A = np.vstack((a1, a2)).T
    n_distributions = A.shape[1]

    # loss matrix + normalization
    M = ot.utils.dist0(n)
    M /= M.max()


    #%% plot the distributions

    pl.figure(1, figsize=(6.4, 3))
    for i in range(n_distributions):
        pl.plot(x, A[:, i])
    pl.title('Distributions')
    pl.tight_layout()


    #%% barycenter computation

    alpha = 0.5  # 0<=alpha<=1
    weights = np.array([1 - alpha, alpha])

    # l2bary
    bary_l2 = A.dot(weights)

    # wasserstein
    reg = 1e-3
    ot.tic()
    bary_wass = ot.bregman.barycenter(A, M, reg, weights)
    ot.toc()


    ot.tic()
    bary_wass2 = ot.lp.barycenter(A, M, weights, solver='interior-point', verbose=True)
    ot.toc()


    problems.append([A, [bary_l2, bary_wass, bary_wass2]])

    pl.figure(2)
    pl.clf()
    pl.subplot(2, 1, 1)
    for i in range(n_distributions):
        pl.plot(x, A[:, i])
    pl.title('Distributions')

    pl.subplot(2, 1, 2)
    pl.plot(x, bary_l2, 'r', label='l2')
    pl.plot(x, bary_wass, 'g', label='Reg Wasserstein')
    pl.plot(x, bary_wass2, 'b', label='LP Wasserstein')
    pl.legend()
    pl.title('Barycenters')
    pl.tight_layout()

    #%% parameters

    a1 = np.zeros(n)
    a2 = np.zeros(n)

    a1[10] = .25
    a1[20] = .5
    a1[30] = .25
    a2[80] = 1


    a1 /= a1.sum()
    a2 /= a2.sum()

    # creating matrix A containing all distributions
    A = np.vstack((a1, a2)).T
    n_distributions = A.shape[1]

    # loss matrix + normalization
    M = ot.utils.dist0(n)
    M /= M.max()


    #%% plot the distributions

    pl.figure(1, figsize=(6.4, 3))
    for i in range(n_distributions):
        pl.plot(x, A[:, i])
    pl.title('Distributions')
    pl.tight_layout()


    #%% barycenter computation

    alpha = 0.5  # 0<=alpha<=1
    weights = np.array([1 - alpha, alpha])

    # l2bary
    bary_l2 = A.dot(weights)

    # wasserstein
    reg = 1e-3
    ot.tic()
    bary_wass = ot.bregman.barycenter(A, M, reg, weights)
    ot.toc()


    ot.tic()
    bary_wass2 = ot.lp.barycenter(A, M, weights, solver='interior-point', verbose=True)
    ot.toc()


    problems.append([A, [bary_l2, bary_wass, bary_wass2]])

    pl.figure(2)
    pl.clf()
    pl.subplot(2, 1, 1)
    for i in range(n_distributions):
        pl.plot(x, A[:, i])
    pl.title('Distributions')

    pl.subplot(2, 1, 2)
    pl.plot(x, bary_l2, 'r', label='l2')
    pl.plot(x, bary_wass, 'g', label='Reg Wasserstein')
    pl.plot(x, bary_wass2, 'b', label='LP Wasserstein')
    pl.legend()
    pl.title('Barycenters')
    pl.tight_layout()





.. rst-class:: sphx-glr-horizontal


    *

      .. image:: /auto_examples/images/sphx_glr_plot_barycenter_lp_vs_entropic_003.png
            :scale: 47

    *

      .. image:: /auto_examples/images/sphx_glr_plot_barycenter_lp_vs_entropic_004.png
            :scale: 47


.. rst-class:: sphx-glr-script-out

 Out::

    Elapsed time : 0.014938592910766602 s
    Primal Feasibility  Dual Feasibility    Duality Gap         Step             Path Parameter      Objective          
    1.0                 1.0                 1.0                 -                1.0                 1700.336700337      
    0.006776466288966   0.006776466288966   0.006776466288966   0.9932238515788  0.006776466288966   125.6649255808      
    0.004036918865495   0.004036918865495   0.004036918865495   0.4272973099316  0.004036918865495   12.3471617011       
    0.00121923268707    0.00121923268707    0.00121923268707    0.749698685599   0.00121923268707    0.3243835647408     
    0.0003837422984432  0.0003837422984432  0.0003837422984432  0.6926882608284  0.0003837422984432  0.1361719397493     
    0.0001070128410183  0.0001070128410183  0.0001070128410183  0.7643889137854  0.0001070128410183  0.07581952832518    
    0.0001001275033711  0.0001001275033711  0.0001001275033711  0.07058704837812 0.0001001275033712  0.0734739493635     
    4.550897507844e-05  4.550897507841e-05  4.550897507844e-05  0.5761172484828  4.550897507845e-05  0.05555077655047    
    8.557124125522e-06  8.5571241255e-06    8.557124125522e-06  0.8535925441152  8.557124125522e-06  0.04439814660221    
    3.611995628407e-06  3.61199562841e-06   3.611995628414e-06  0.6002277331554  3.611995628415e-06  0.04283007762152    
    7.590393750365e-07  7.590393750491e-07  7.590393750378e-07  0.8221486533416  7.590393750381e-07  0.04192322976248    
    8.299929287441e-08  8.299929286079e-08  8.299929287532e-08  0.9017467938799  8.29992928758e-08   0.04170825633295    
    3.117560203449e-10  3.117560130137e-10  3.11756019954e-10   0.997039969226   3.11756019952e-10   0.04168179329766    
    1.559749653711e-14  1.558073160926e-14  1.559756940692e-14  0.9999499686183  1.559750643989e-14  0.04168169240444    
    Optimization terminated successfully.
    Elapsed time : 2.642659902572632 s
    Elapsed time : 0.002908945083618164 s
    Primal Feasibility  Dual Feasibility    Duality Gap         Step             Path Parameter      Objective          
    1.0                 1.0                 1.0                 -                1.0                 1700.336700337      
    0.006774675520727   0.006774675520727   0.006774675520727   0.9932256422636  0.006774675520727   125.6956034743      
    0.002048208707562   0.002048208707562   0.002048208707562   0.7343095368143  0.002048208707562   5.213991622123      
    0.000269736547478   0.0002697365474781  0.0002697365474781  0.8839403501193  0.000269736547478   0.505938390389      
    6.832109993943e-05  6.832109993944e-05  6.832109993944e-05  0.7601171075965  6.832109993943e-05  0.2339657807272     
    2.437682932219e-05  2.43768293222e-05   2.437682932219e-05  0.6663448297475  2.437682932219e-05  0.1471256246325     
    1.13498321631e-05   1.134983216308e-05  1.13498321631e-05   0.5553643816404  1.13498321631e-05   0.1181584941171     
    3.342312725885e-06  3.342312725884e-06  3.342312725885e-06  0.7238133571615  3.342312725885e-06  0.1006387519747     
    7.078561231603e-07  7.078561231509e-07  7.078561231604e-07  0.8033142552512  7.078561231603e-07  0.09474734646269    
    1.966870956916e-07  1.966870954537e-07  1.966870954468e-07  0.752547917788   1.966870954633e-07  0.09354342735766    
    4.19989524849e-10   4.199895164852e-10  4.199895238758e-10  0.9984019849375  4.19989523951e-10   0.09310367785861    
    2.101015938666e-14  2.100625691113e-14  2.101023853438e-14  0.999949974425   2.101023691864e-14  0.09310274466458    
    Optimization terminated successfully.
    Elapsed time : 2.690450668334961 s


Final figure
------------




.. code-block:: python


    #%% plot

    nbm = len(problems)
    nbm2 = (nbm // 2)


    pl.figure(2, (20, 6))
    pl.clf()

    for i in range(nbm):

        A = problems[i][0]
        bary_l2 = problems[i][1][0]
        bary_wass = problems[i][1][1]
        bary_wass2 = problems[i][1][2]

        pl.subplot(2, nbm, 1 + i)
        for j in range(n_distributions):
            pl.plot(x, A[:, j])
        if i == nbm2:
            pl.title('Distributions')
        pl.xticks(())
        pl.yticks(())

        pl.subplot(2, nbm, 1 + i + nbm)

        pl.plot(x, bary_l2, 'r', label='L2 (Euclidean)')
        pl.plot(x, bary_wass, 'g', label='Reg Wasserstein')
        pl.plot(x, bary_wass2, 'b', label='LP Wasserstein')
        if i == nbm - 1:
            pl.legend()
        if i == nbm2:
            pl.title('Barycenters')

        pl.xticks(())
        pl.yticks(())



.. image:: /auto_examples/images/sphx_glr_plot_barycenter_lp_vs_entropic_006.png
    :align: center




**Total running time of the script:** ( 0 minutes  8.892 seconds)



.. only :: html

 .. container:: sphx-glr-footer


  .. container:: sphx-glr-download

     :download:`Download Python source code: plot_barycenter_lp_vs_entropic.py <plot_barycenter_lp_vs_entropic.py>`



  .. container:: sphx-glr-download

     :download:`Download Jupyter notebook: plot_barycenter_lp_vs_entropic.ipynb <plot_barycenter_lp_vs_entropic.ipynb>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.readthedocs.io>`_