summaryrefslogtreecommitdiff
path: root/docs/source/auto_examples/plot_compute_emd.rst
blob: f2e200533a1ade4f5d79066fb5f2e0aae1683ed7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
.. _sphx_glr_auto_examples_plot_compute_emd.py:


====================
1D optimal transport
====================





.. rst-class:: sphx-glr-horizontal


    *

      .. image:: /auto_examples/images/sphx_glr_plot_compute_emd_001.png
            :scale: 47

    *

      .. image:: /auto_examples/images/sphx_glr_plot_compute_emd_002.png
            :scale: 47





.. code-block:: python


    # Author: Remi Flamary <remi.flamary@unice.fr>
    #
    # License: MIT License

    import numpy as np
    import matplotlib.pylab as pl
    import ot
    from ot.datasets import get_1D_gauss as gauss


    #%% parameters

    n = 100  # nb bins
    n_target = 50  # nb target distributions


    # bin positions
    x = np.arange(n, dtype=np.float64)

    lst_m = np.linspace(20, 90, n_target)

    # Gaussian distributions
    a = gauss(n, m=20, s=5)  # m= mean, s= std

    B = np.zeros((n, n_target))

    for i, m in enumerate(lst_m):
        B[:, i] = gauss(n, m=m, s=5)

    # loss matrix and normalization
    M = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)), 'euclidean')
    M /= M.max()
    M2 = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)), 'sqeuclidean')
    M2 /= M2.max()
    #%% plot the distributions

    pl.figure(1)
    pl.subplot(2, 1, 1)
    pl.plot(x, a, 'b', label='Source distribution')
    pl.title('Source distribution')
    pl.subplot(2, 1, 2)
    pl.plot(x, B, label='Target distributions')
    pl.title('Target distributions')
    pl.tight_layout()

    #%% Compute and plot distributions and loss matrix

    d_emd = ot.emd2(a, B, M)  # direct computation of EMD
    d_emd2 = ot.emd2(a, B, M2)  # direct computation of EMD with loss M3


    pl.figure(2)
    pl.plot(d_emd, label='Euclidean EMD')
    pl.plot(d_emd2, label='Squared Euclidean EMD')
    pl.title('EMD distances')
    pl.legend()

    #%%
    reg = 1e-2
    d_sinkhorn = ot.sinkhorn2(a, B, M, reg)
    d_sinkhorn2 = ot.sinkhorn2(a, B, M2, reg)

    pl.figure(2)
    pl.clf()
    pl.plot(d_emd, label='Euclidean EMD')
    pl.plot(d_emd2, label='Squared Euclidean EMD')
    pl.plot(d_sinkhorn, '+', label='Euclidean Sinkhorn')
    pl.plot(d_sinkhorn2, '+', label='Squared Euclidean Sinkhorn')
    pl.title('EMD distances')
    pl.legend()

    pl.show()

**Total running time of the script:** ( 0 minutes  0.906 seconds)



.. container:: sphx-glr-footer


  .. container:: sphx-glr-download

     :download:`Download Python source code: plot_compute_emd.py <plot_compute_emd.py>`



  .. container:: sphx-glr-download

     :download:`Download Jupyter notebook: plot_compute_emd.ipynb <plot_compute_emd.ipynb>`

.. rst-class:: sphx-glr-signature

    `Generated by Sphinx-Gallery <http://sphinx-gallery.readthedocs.io>`_