summaryrefslogtreecommitdiff
path: root/docs/source/auto_examples/plot_convolutional_barycenter.rst
blob: a28db2fc6f10f6169166ea7e3ab17f9131e79a55 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
.. _sphx_glr_auto_examples_plot_convolutional_barycenter.py:


============================================
Convolutional Wasserstein Barycenter example
============================================

This example is designed to illustrate how the Convolutional Wasserstein Barycenter
function of POT works.



.. code-block:: python


    # Author: Nicolas Courty <ncourty@irisa.fr>
    #
    # License: MIT License


    import numpy as np
    import pylab as pl
    import ot







Data preparation
----------------

The four distributions are constructed from 4 simple images



.. code-block:: python



    f1 = 1 - pl.imread('../data/redcross.png')[:, :, 2]
    f2 = 1 - pl.imread('../data/duck.png')[:, :, 2]
    f3 = 1 - pl.imread('../data/heart.png')[:, :, 2]
    f4 = 1 - pl.imread('../data/tooth.png')[:, :, 2]

    A = []
    f1 = f1 / np.sum(f1)
    f2 = f2 / np.sum(f2)
    f3 = f3 / np.sum(f3)
    f4 = f4 / np.sum(f4)
    A.append(f1)
    A.append(f2)
    A.append(f3)
    A.append(f4)
    A = np.array(A)

    nb_images = 5

    # those are the four corners coordinates that will be interpolated by bilinear
    # interpolation
    v1 = np.array((1, 0, 0, 0))
    v2 = np.array((0, 1, 0, 0))
    v3 = np.array((0, 0, 1, 0))
    v4 = np.array((0, 0, 0, 1))








Barycenter computation and visualization
----------------------------------------




.. code-block:: python


    pl.figure(figsize=(10, 10))
    pl.title('Convolutional Wasserstein Barycenters in POT')
    cm = 'Blues'
    # regularization parameter
    reg = 0.004
    for i in range(nb_images):
        for j in range(nb_images):
            pl.subplot(nb_images, nb_images, i * nb_images + j + 1)
            tx = float(i) / (nb_images - 1)
            ty = float(j) / (nb_images - 1)

            # weights are constructed by bilinear interpolation
            tmp1 = (1 - tx) * v1 + tx * v2
            tmp2 = (1 - tx) * v3 + tx * v4
            weights = (1 - ty) * tmp1 + ty * tmp2

            if i == 0 and j == 0:
                pl.imshow(f1, cmap=cm)
                pl.axis('off')
            elif i == 0 and j == (nb_images - 1):
                pl.imshow(f3, cmap=cm)
                pl.axis('off')
            elif i == (nb_images - 1) and j == 0:
                pl.imshow(f2, cmap=cm)
                pl.axis('off')
            elif i == (nb_images - 1) and j == (nb_images - 1):
                pl.imshow(f4, cmap=cm)
                pl.axis('off')
            else:
                # call to barycenter computation
                pl.imshow(ot.bregman.convolutional_barycenter2d(A, reg, weights), cmap=cm)
                pl.axis('off')
    pl.show()



.. image:: /auto_examples/images/sphx_glr_plot_convolutional_barycenter_001.png
    :align: center




**Total running time of the script:** ( 1 minutes  11.608 seconds)



.. only :: html

 .. container:: sphx-glr-footer


  .. container:: sphx-glr-download

     :download:`Download Python source code: plot_convolutional_barycenter.py <plot_convolutional_barycenter.py>`



  .. container:: sphx-glr-download

     :download:`Download Jupyter notebook: plot_convolutional_barycenter.ipynb <plot_convolutional_barycenter.ipynb>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.readthedocs.io>`_