summaryrefslogtreecommitdiff
path: root/docs/source/auto_examples/plot_fgw.ipynb
blob: 1b150bd9bc8f23ca6274e5d2601810ee42e2162d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
{
  "cells": [
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "collapsed": false
      },
      "outputs": [],
      "source": [
        "%matplotlib inline"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "\n# Plot Fused-gromov-Wasserstein\n\n\nThis example illustrates the computation of FGW for 1D measures[18].\n\n.. [18] Vayer Titouan, Chapel Laetitia, Flamary R{'e}mi, Tavenard Romain\n      and Courty Nicolas\n    \"Optimal Transport for structured data with application on graphs\"\n    International Conference on Machine Learning (ICML). 2019.\n\n\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "collapsed": false
      },
      "outputs": [],
      "source": [
        "# Author: Titouan Vayer <titouan.vayer@irisa.fr>\n#\n# License: MIT License\n\nimport matplotlib.pyplot as pl\nimport numpy as np\nimport ot\nfrom ot.gromov import gromov_wasserstein, fused_gromov_wasserstein"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "Generate data\n---------\n\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "collapsed": false
      },
      "outputs": [],
      "source": [
        "#%% parameters\n# We create two 1D random measures\nn = 20  # number of points in the first distribution\nn2 = 30  # number of points in the second distribution\nsig = 1  # std of first distribution\nsig2 = 0.1  # std of second distribution\n\nnp.random.seed(0)\n\nphi = np.arange(n)[:, None]\nxs = phi + sig * np.random.randn(n, 1)\nys = np.vstack((np.ones((n // 2, 1)), 0 * np.ones((n // 2, 1)))) + sig2 * np.random.randn(n, 1)\n\nphi2 = np.arange(n2)[:, None]\nxt = phi2 + sig * np.random.randn(n2, 1)\nyt = np.vstack((np.ones((n2 // 2, 1)), 0 * np.ones((n2 // 2, 1)))) + sig2 * np.random.randn(n2, 1)\nyt = yt[::-1, :]\n\np = ot.unif(n)\nq = ot.unif(n2)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "Plot data\n---------\n\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "collapsed": false
      },
      "outputs": [],
      "source": [
        "#%% plot the distributions\n\npl.close(10)\npl.figure(10, (7, 7))\n\npl.subplot(2, 1, 1)\n\npl.scatter(ys, xs, c=phi, s=70)\npl.ylabel('Feature value a', fontsize=20)\npl.title('$\\mu=\\sum_i \\delta_{x_i,a_i}$', fontsize=25, usetex=True, y=1)\npl.xticks(())\npl.yticks(())\npl.subplot(2, 1, 2)\npl.scatter(yt, xt, c=phi2, s=70)\npl.xlabel('coordinates x/y', fontsize=25)\npl.ylabel('Feature value b', fontsize=20)\npl.title('$\\\\nu=\\sum_j \\delta_{y_j,b_j}$', fontsize=25, usetex=True, y=1)\npl.yticks(())\npl.tight_layout()\npl.show()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "Create structure matrices and across-feature distance matrix\n---------\n\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "collapsed": false
      },
      "outputs": [],
      "source": [
        "#%% Structure matrices and across-features distance matrix\nC1 = ot.dist(xs)\nC2 = ot.dist(xt)\nM = ot.dist(ys, yt)\nw1 = ot.unif(C1.shape[0])\nw2 = ot.unif(C2.shape[0])\nGot = ot.emd([], [], M)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "Plot matrices\n---------\n\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "collapsed": false
      },
      "outputs": [],
      "source": [
        "#%%\ncmap = 'Reds'\npl.close(10)\npl.figure(10, (5, 5))\nfs = 15\nl_x = [0, 5, 10, 15]\nl_y = [0, 5, 10, 15, 20, 25]\ngs = pl.GridSpec(5, 5)\n\nax1 = pl.subplot(gs[3:, :2])\n\npl.imshow(C1, cmap=cmap, interpolation='nearest')\npl.title(\"$C_1$\", fontsize=fs)\npl.xlabel(\"$k$\", fontsize=fs)\npl.ylabel(\"$i$\", fontsize=fs)\npl.xticks(l_x)\npl.yticks(l_x)\n\nax2 = pl.subplot(gs[:3, 2:])\n\npl.imshow(C2, cmap=cmap, interpolation='nearest')\npl.title(\"$C_2$\", fontsize=fs)\npl.ylabel(\"$l$\", fontsize=fs)\n#pl.ylabel(\"$l$\",fontsize=fs)\npl.xticks(())\npl.yticks(l_y)\nax2.set_aspect('auto')\n\nax3 = pl.subplot(gs[3:, 2:], sharex=ax2, sharey=ax1)\npl.imshow(M, cmap=cmap, interpolation='nearest')\npl.yticks(l_x)\npl.xticks(l_y)\npl.ylabel(\"$i$\", fontsize=fs)\npl.title(\"$M_{AB}$\", fontsize=fs)\npl.xlabel(\"$j$\", fontsize=fs)\npl.tight_layout()\nax3.set_aspect('auto')\npl.show()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "Compute FGW/GW\n---------\n\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "collapsed": false
      },
      "outputs": [],
      "source": [
        "#%% Computing FGW and GW\nalpha = 1e-3\n\not.tic()\nGwg, logw = fused_gromov_wasserstein(M, C1, C2, p, q, loss_fun='square_loss', alpha=alpha, verbose=True, log=True)\not.toc()\n\n#%reload_ext WGW\nGg, log = gromov_wasserstein(C1, C2, p, q, loss_fun='square_loss', verbose=True, log=True)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "Visualize transport matrices\n---------\n\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "collapsed": false
      },
      "outputs": [],
      "source": [
        "#%% visu OT matrix\ncmap = 'Blues'\nfs = 15\npl.figure(2, (13, 5))\npl.clf()\npl.subplot(1, 3, 1)\npl.imshow(Got, cmap=cmap, interpolation='nearest')\n#pl.xlabel(\"$y$\",fontsize=fs)\npl.ylabel(\"$i$\", fontsize=fs)\npl.xticks(())\n\npl.title('Wasserstein ($M$ only)')\n\npl.subplot(1, 3, 2)\npl.imshow(Gg, cmap=cmap, interpolation='nearest')\npl.title('Gromov ($C_1,C_2$ only)')\npl.xticks(())\npl.subplot(1, 3, 3)\npl.imshow(Gwg, cmap=cmap, interpolation='nearest')\npl.title('FGW  ($M+C_1,C_2$)')\n\npl.xlabel(\"$j$\", fontsize=fs)\npl.ylabel(\"$i$\", fontsize=fs)\n\npl.tight_layout()\npl.show()"
      ]
    }
  ],
  "metadata": {
    "kernelspec": {
      "display_name": "Python 3",
      "language": "python",
      "name": "python3"
    },
    "language_info": {
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "file_extension": ".py",
      "mimetype": "text/x-python",
      "name": "python",
      "nbconvert_exporter": "python",
      "pygments_lexer": "ipython3",
      "version": "3.6.8"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}