summaryrefslogtreecommitdiff
path: root/docs/source/auto_examples/plot_gromov_barycenter.rst
blob: 531ee22b79aeee69c6ae884b72720b952a177b38 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
.. _sphx_glr_auto_examples_plot_gromov_barycenter.py:


=====================================
Gromov-Wasserstein Barycenter example
=====================================

This example is designed to show how to use the Gromov-Wasserstein distance
computation in POT.



.. code-block:: python


    # Author: Erwan Vautier <erwan.vautier@gmail.com>
    #         Nicolas Courty <ncourty@irisa.fr>
    #
    # License: MIT License


    import numpy as np
    import scipy as sp

    import scipy.ndimage as spi
    import matplotlib.pylab as pl
    from sklearn import manifold
    from sklearn.decomposition import PCA

    import ot







Smacof MDS
----------

This function allows to find an embedding of points given a dissimilarity matrix
that will be given by the output of the algorithm



.. code-block:: python



    def smacof_mds(C, dim, max_iter=3000, eps=1e-9):
        """
        Returns an interpolated point cloud following the dissimilarity matrix C
        using SMACOF multidimensional scaling (MDS) in specific dimensionned
        target space

        Parameters
        ----------
        C : ndarray, shape (ns, ns)
            dissimilarity matrix
        dim : int
              dimension of the targeted space
        max_iter :  int
            Maximum number of iterations of the SMACOF algorithm for a single run
        eps : float
            relative tolerance w.r.t stress to declare converge

        Returns
        -------
        npos : ndarray, shape (R, dim)
               Embedded coordinates of the interpolated point cloud (defined with
               one isometry)
        """

        rng = np.random.RandomState(seed=3)

        mds = manifold.MDS(
            dim,
            max_iter=max_iter,
            eps=1e-9,
            dissimilarity='precomputed',
            n_init=1)
        pos = mds.fit(C).embedding_

        nmds = manifold.MDS(
            2,
            max_iter=max_iter,
            eps=1e-9,
            dissimilarity="precomputed",
            random_state=rng,
            n_init=1)
        npos = nmds.fit_transform(C, init=pos)

        return npos








Data preparation
----------------

The four distributions are constructed from 4 simple images



.. code-block:: python



    def im2mat(I):
        """Converts and image to matrix (one pixel per line)"""
        return I.reshape((I.shape[0] * I.shape[1], I.shape[2]))


    square = spi.imread('../data/square.png').astype(np.float64)[:, :, 2] / 256
    cross = spi.imread('../data/cross.png').astype(np.float64)[:, :, 2] / 256
    triangle = spi.imread('../data/triangle.png').astype(np.float64)[:, :, 2] / 256
    star = spi.imread('../data/star.png').astype(np.float64)[:, :, 2] / 256

    shapes = [square, cross, triangle, star]

    S = 4
    xs = [[] for i in range(S)]


    for nb in range(4):
        for i in range(8):
            for j in range(8):
                if shapes[nb][i, j] < 0.95:
                    xs[nb].append([j, 8 - i])

    xs = np.array([np.array(xs[0]), np.array(xs[1]),
                   np.array(xs[2]), np.array(xs[3])])







Barycenter computation
----------------------



.. code-block:: python



    ns = [len(xs[s]) for s in range(S)]
    n_samples = 30

    """Compute all distances matrices for the four shapes"""
    Cs = [sp.spatial.distance.cdist(xs[s], xs[s]) for s in range(S)]
    Cs = [cs / cs.max() for cs in Cs]

    ps = [ot.unif(ns[s]) for s in range(S)]
    p = ot.unif(n_samples)


    lambdast = [[float(i) / 3, float(3 - i) / 3] for i in [1, 2]]

    Ct01 = [0 for i in range(2)]
    for i in range(2):
        Ct01[i] = ot.gromov.gromov_barycenters(n_samples, [Cs[0], Cs[1]],
                                               [ps[0], ps[1]
                                                ], p, lambdast[i], 'square_loss',  # 5e-4,
                                               max_iter=100, tol=1e-3)

    Ct02 = [0 for i in range(2)]
    for i in range(2):
        Ct02[i] = ot.gromov.gromov_barycenters(n_samples, [Cs[0], Cs[2]],
                                               [ps[0], ps[2]
                                                ], p, lambdast[i], 'square_loss',  # 5e-4,
                                               max_iter=100, tol=1e-3)

    Ct13 = [0 for i in range(2)]
    for i in range(2):
        Ct13[i] = ot.gromov.gromov_barycenters(n_samples, [Cs[1], Cs[3]],
                                               [ps[1], ps[3]
                                                ], p, lambdast[i], 'square_loss',  # 5e-4,
                                               max_iter=100, tol=1e-3)

    Ct23 = [0 for i in range(2)]
    for i in range(2):
        Ct23[i] = ot.gromov.gromov_barycenters(n_samples, [Cs[2], Cs[3]],
                                               [ps[2], ps[3]
                                                ], p, lambdast[i], 'square_loss',  # 5e-4,
                                               max_iter=100, tol=1e-3)








Visualization
-------------

The PCA helps in getting consistency between the rotations



.. code-block:: python



    clf = PCA(n_components=2)
    npos = [0, 0, 0, 0]
    npos = [smacof_mds(Cs[s], 2) for s in range(S)]

    npost01 = [0, 0]
    npost01 = [smacof_mds(Ct01[s], 2) for s in range(2)]
    npost01 = [clf.fit_transform(npost01[s]) for s in range(2)]

    npost02 = [0, 0]
    npost02 = [smacof_mds(Ct02[s], 2) for s in range(2)]
    npost02 = [clf.fit_transform(npost02[s]) for s in range(2)]

    npost13 = [0, 0]
    npost13 = [smacof_mds(Ct13[s], 2) for s in range(2)]
    npost13 = [clf.fit_transform(npost13[s]) for s in range(2)]

    npost23 = [0, 0]
    npost23 = [smacof_mds(Ct23[s], 2) for s in range(2)]
    npost23 = [clf.fit_transform(npost23[s]) for s in range(2)]


    fig = pl.figure(figsize=(10, 10))

    ax1 = pl.subplot2grid((4, 4), (0, 0))
    pl.xlim((-1, 1))
    pl.ylim((-1, 1))
    ax1.scatter(npos[0][:, 0], npos[0][:, 1], color='r')

    ax2 = pl.subplot2grid((4, 4), (0, 1))
    pl.xlim((-1, 1))
    pl.ylim((-1, 1))
    ax2.scatter(npost01[1][:, 0], npost01[1][:, 1], color='b')

    ax3 = pl.subplot2grid((4, 4), (0, 2))
    pl.xlim((-1, 1))
    pl.ylim((-1, 1))
    ax3.scatter(npost01[0][:, 0], npost01[0][:, 1], color='b')

    ax4 = pl.subplot2grid((4, 4), (0, 3))
    pl.xlim((-1, 1))
    pl.ylim((-1, 1))
    ax4.scatter(npos[1][:, 0], npos[1][:, 1], color='r')

    ax5 = pl.subplot2grid((4, 4), (1, 0))
    pl.xlim((-1, 1))
    pl.ylim((-1, 1))
    ax5.scatter(npost02[1][:, 0], npost02[1][:, 1], color='b')

    ax6 = pl.subplot2grid((4, 4), (1, 3))
    pl.xlim((-1, 1))
    pl.ylim((-1, 1))
    ax6.scatter(npost13[1][:, 0], npost13[1][:, 1], color='b')

    ax7 = pl.subplot2grid((4, 4), (2, 0))
    pl.xlim((-1, 1))
    pl.ylim((-1, 1))
    ax7.scatter(npost02[0][:, 0], npost02[0][:, 1], color='b')

    ax8 = pl.subplot2grid((4, 4), (2, 3))
    pl.xlim((-1, 1))
    pl.ylim((-1, 1))
    ax8.scatter(npost13[0][:, 0], npost13[0][:, 1], color='b')

    ax9 = pl.subplot2grid((4, 4), (3, 0))
    pl.xlim((-1, 1))
    pl.ylim((-1, 1))
    ax9.scatter(npos[2][:, 0], npos[2][:, 1], color='r')

    ax10 = pl.subplot2grid((4, 4), (3, 1))
    pl.xlim((-1, 1))
    pl.ylim((-1, 1))
    ax10.scatter(npost23[1][:, 0], npost23[1][:, 1], color='b')

    ax11 = pl.subplot2grid((4, 4), (3, 2))
    pl.xlim((-1, 1))
    pl.ylim((-1, 1))
    ax11.scatter(npost23[0][:, 0], npost23[0][:, 1], color='b')

    ax12 = pl.subplot2grid((4, 4), (3, 3))
    pl.xlim((-1, 1))
    pl.ylim((-1, 1))
    ax12.scatter(npos[3][:, 0], npos[3][:, 1], color='r')



.. image:: /auto_examples/images/sphx_glr_plot_gromov_barycenter_001.png
    :align: center




**Total running time of the script:** ( 0 minutes  5.906 seconds)



.. only :: html

 .. container:: sphx-glr-footer


  .. container:: sphx-glr-download

     :download:`Download Python source code: plot_gromov_barycenter.py <plot_gromov_barycenter.py>`



  .. container:: sphx-glr-download

     :download:`Download Jupyter notebook: plot_gromov_barycenter.ipynb <plot_gromov_barycenter.ipynb>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.readthedocs.io>`_