summaryrefslogtreecommitdiff
path: root/docs/source/readme.rst
blob: ee32e2b533fbe5713e2c70b21e754d88302d1c8a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
POT: Python Optimal Transport
=============================

|PyPI version| |Anaconda Cloud| |Build Status| |Codecov Status|
|Downloads| |Anaconda downloads| |License|

This open source Python library provide several solvers for optimization
problems related to Optimal Transport for signal, image processing and
machine learning.

Website and documentation: https://PythonOT.github.io/

Source Code (MIT): https://github.com/PythonOT/POT

POT provides the following generic OT solvers (links to examples):

-  `OT Network Simplex
   solver <auto_examples/plot_OT_1D.html>`__
   for the linear program/ Earth Movers Distance [1] .
-  `Conditional
   gradient <auto_examples/plot_optim_OTreg.html>`__
   [6] and `Generalized conditional
   gradient <auto_examples/plot_optim_OTreg.html>`__
   for regularized OT [7].
-  Entropic regularization OT solver with `Sinkhorn Knopp
   Algorithm <auto_examples/plot_OT_1D.html>`__
   [2] , stabilized version [9] [10] [34], greedy Sinkhorn [22] and
   `Screening Sinkhorn
   [26] <auto_examples/plot_screenkhorn_1D.html>`__.
-  Bregman projections for `Wasserstein
   barycenter <auto_examples/barycenters/plot_barycenter_lp_vs_entropic.html>`__
   [3], `convolutional
   barycenter <auto_examples/barycenters/plot_convolutional_barycenter.html>`__
   [21] and unmixing [4].
-  Sinkhorn divergence [23] and entropic regularization OT from
   empirical data.
-  `Smooth optimal transport
   solvers <auto_examples/plot_OT_1D_smooth.html>`__
   (dual and semi-dual) for KL and squared L2 regularizations [17].
-  Non regularized `Wasserstein barycenters
   [16] <auto_examples/barycenters/plot_barycenter_lp_vs_entropic.html>`__)
   with LP solver (only small scale).
-  `Gromov-Wasserstein
   distances <auto_examples/gromov/plot_gromov.html>`__
   and `GW
   barycenters <auto_examples/gromov/plot_gromov_barycenter.html>`__
   (exact [13] and regularized [12])
-  `Fused-Gromov-Wasserstein distances
   solver <auto_examples/gromov/plot_fgw.html#sphx-glr-auto-examples-plot-fgw-py>`__
   and `FGW
   barycenters <auto_examples/gromov/plot_barycenter_fgw.html>`__
   [24]
-  `Stochastic
   solver <auto_examples/plot_stochastic.html>`__
   for Large-scale Optimal Transport (semi-dual problem [18] and dual
   problem [19])
-  `Stochastic solver of Gromov
   Wasserstein <auto_examples/gromov/plot_gromov.html>`__
   for large-scale problem with any loss functions [33]
-  Non regularized `free support Wasserstein
   barycenters <auto_examples/barycenters/plot_free_support_barycenter.html>`__
   [20].
-  `Unbalanced
   OT <auto_examples/unbalanced-partial/plot_UOT_1D.html>`__
   with KL relaxation and
   `barycenter <auto_examples/unbalanced-partial/plot_UOT_barycenter_1D.html>`__
   [10, 25].
-  `Partial Wasserstein and
   Gromov-Wasserstein <auto_examples/unbalanced-partial/plot_partial_wass_and_gromov.html>`__
   (exact [29] and entropic [3] formulations).
-  `Sliced
   Wasserstein <auto_examples/sliced-wasserstein/plot_variance.html>`__
   [31, 32].
-  `Several
   backends <https://pythonot.github.io/quickstart.html#solving-ot-with-multiple-backends>`__
   for easy use of POT with
   `Pytorch <https://pytorch.org/>`__/`jax <https://github.com/google/jax>`__/`Numpy <https://numpy.org/>`__
   arrays.

POT provides the following Machine Learning related solvers:

-  `Optimal transport for domain
   adaptation <auto_examples/domain-adaptation/plot_otda_classes.html>`__
   with `group lasso
   regularization <auto_examples/domain-adaptation/plot_otda_classes.html>`__,
   `Laplacian
   regularization <auto_examples/domain-adaptation/plot_otda_laplacian.html>`__
   [5] [30] and `semi supervised
   setting <auto_examples/domain-adaptation/plot_otda_semi_supervised.html>`__.
-  `Linear OT
   mapping <auto_examples/domain-adaptation/plot_otda_linear_mapping.html>`__
   [14] and `Joint OT mapping
   estimation <auto_examples/domain-adaptation/plot_otda_mapping.html>`__
   [8].
-  `Wasserstein Discriminant
   Analysis <auto_examples/others/plot_WDA.html>`__
   [11] (requires autograd + pymanopt).
-  `JCPOT algorithm for multi-source domain adaptation with target
   shift <auto_examples/domain-adaptation/plot_otda_jcpot.html>`__
   [27].

Some other examples are available in the
`documentation <auto_examples/index.html>`__.

Using and citing the toolbox
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

If you use this toolbox in your research and find it useful, please cite
POT using the following reference from our `JMLR
paper <https://jmlr.org/papers/v22/20-451.html>`__:

::

    Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon, Stanislas Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo Gautheron, Nathalie T.H. Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko, Antoine Rolet, Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain Tavenard, Alexander Tong, Titouan Vayer,
    POT Python Optimal Transport library,
    Journal of Machine Learning Research, 22(78):1−8, 2021.
    Website: https://pythonot.github.io/

In Bibtex format:

.. code:: bibtex

    @article{flamary2021pot,
      author  = {R{\'e}mi Flamary and Nicolas Courty and Alexandre Gramfort and Mokhtar Z. Alaya and Aur{\'e}lie Boisbunon and Stanislas Chambon and Laetitia Chapel and Adrien Corenflos and Kilian Fatras and Nemo Fournier and L{\'e}o Gautheron and Nathalie T.H. Gayraud and Hicham Janati and Alain Rakotomamonjy and Ievgen Redko and Antoine Rolet and Antony Schutz and Vivien Seguy and Danica J. Sutherland and Romain Tavenard and Alexander Tong and Titouan Vayer},
      title   = {POT: Python Optimal Transport},
      journal = {Journal of Machine Learning Research},
      year    = {2021},
      volume  = {22},
      number  = {78},
      pages   = {1-8},
      url     = {http://jmlr.org/papers/v22/20-451.html}
    }

Installation
------------

The library has been tested on Linux, MacOSX and Windows. It requires a
C++ compiler for building/installing the EMD solver and relies on the
following Python modules:

-  Numpy (>=1.16)
-  Scipy (>=1.0)
-  Cython (>=0.23) (build only, not necessary when installing from pip
   or conda)

Pip installation
^^^^^^^^^^^^^^^^

You can install the toolbox through PyPI with:

.. code:: console

    pip install POT

or get the very latest version by running:

.. code:: console

    pip install -U https://github.com/PythonOT/POT/archive/master.zip # with --user for user install (no root)

Anaconda installation with conda-forge
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

If you use the Anaconda python distribution, POT is available in
`conda-forge <https://conda-forge.org>`__. To install it and the
required dependencies:

.. code:: console

    conda install -c conda-forge pot

Post installation check
^^^^^^^^^^^^^^^^^^^^^^^

After a correct installation, you should be able to import the module
without errors:

.. code:: python

    import ot

Note that for easier access the module is named ``ot`` instead of
``pot``.

Dependencies
~~~~~~~~~~~~

Some sub-modules require additional dependences which are discussed
below

-  **ot.dr** (Wasserstein dimensionality reduction) depends on autograd
   and pymanopt that can be installed with:

.. code:: shell

    pip install pymanopt autograd

-  **ot.gpu** (GPU accelerated OT) depends on cupy that have to be
   installed following instructions on `this
   page <https://docs-cupy.chainer.org/en/stable/install.html>`__.
   Obviously you will need CUDA installed and a compatible GPU. Note
   that this module is deprecated since version 0.8 and will be deleted
   in the future. GPU is now handled automatically through the backends
   and several solver already can run on GPU using the Pytorch backend.

Examples
--------

Short examples
~~~~~~~~~~~~~~

-  Import the toolbox

.. code:: python

    import ot

-  Compute Wasserstein distances

.. code:: python

    # a,b are 1D histograms (sum to 1 and positive)
    # M is the ground cost matrix
    Wd = ot.emd2(a, b, M) # exact linear program
    Wd_reg = ot.sinkhorn2(a, b, M, reg) # entropic regularized OT
    # if b is a matrix compute all distances to a and return a vector

-  Compute OT matrix

.. code:: python

    # a,b are 1D histograms (sum to 1 and positive)
    # M is the ground cost matrix
    T = ot.emd(a, b, M) # exact linear program
    T_reg = ot.sinkhorn(a, b, M, reg) # entropic regularized OT

-  Compute Wasserstein barycenter

.. code:: python

    # A is a n*d matrix containing d  1D histograms
    # M is the ground cost matrix
    ba = ot.barycenter(A, M, reg) # reg is regularization parameter

Examples and Notebooks
~~~~~~~~~~~~~~~~~~~~~~

The examples folder contain several examples and use case for the
library. The full documentation with examples and output is available on
https://PythonOT.github.io/.

Acknowledgements
----------------

This toolbox has been created and is maintained by

-  `Rémi Flamary <http://remi.flamary.com/>`__
-  `Nicolas Courty <http://people.irisa.fr/Nicolas.Courty/>`__

The contributors to this library are

-  `Alexandre Gramfort <http://alexandre.gramfort.net/>`__ (CI,
   documentation)
-  `Laetitia Chapel <http://people.irisa.fr/Laetitia.Chapel/>`__
   (Partial OT)
-  `Michael Perrot <http://perso.univ-st-etienne.fr/pem82055/>`__
   (Mapping estimation)
-  `Léo Gautheron <https://github.com/aje>`__ (GPU implementation)
-  `Nathalie
   Gayraud <https://www.linkedin.com/in/nathalie-t-h-gayraud/?ppe=1>`__
   (DA classes)
-  `Stanislas Chambon <https://slasnista.github.io/>`__ (DA classes)
-  `Antoine Rolet <https://arolet.github.io/>`__ (EMD solver debug)
-  Erwan Vautier (Gromov-Wasserstein)
-  `Kilian Fatras <https://kilianfatras.github.io/>`__ (Stochastic
   solvers)
-  `Alain
   Rakotomamonjy <https://sites.google.com/site/alainrakotomamonjy/home>`__
-  `Vayer Titouan <https://tvayer.github.io/>`__ (Gromov-Wasserstein -,
   Fused-Gromov-Wasserstein)
-  `Hicham Janati <https://hichamjanati.github.io/>`__ (Unbalanced OT)
-  `Romain Tavenard <https://rtavenar.github.io/>`__ (1d Wasserstein)
-  `Mokhtar Z. Alaya <http://mzalaya.github.io/>`__ (Screenkhorn)
-  `Ievgen Redko <https://ievred.github.io/>`__ (Laplacian DA, JCPOT)
-  `Adrien Corenflos <https://adriencorenflos.github.io/>`__ (Sliced
   Wasserstein Distance)
-  `Tanguy Kerdoncuff <https://hv0nnus.github.io/>`__ (Sampled Gromov
   Wasserstein)
-  `Minhui Huang <https://mhhuang95.github.io>`__ (Projection Robust
   Wasserstein Distance)

This toolbox benefit a lot from open source research and we would like
to thank the following persons for providing some code (in various
languages):

-  `Gabriel Peyré <http://gpeyre.github.io/>`__ (Wasserstein Barycenters
   in Matlab)
-  `Mathieu Blondel <https://mblondel.org/>`__ (original implementation
   smooth OT)
-  `Nicolas Bonneel <http://liris.cnrs.fr/~nbonneel/>`__ ( C++ code for
   EMD)
-  `Marco Cuturi <http://marcocuturi.net/>`__ (Sinkhorn Knopp in
   Matlab/Cuda)

Contributions and code of conduct
---------------------------------

Every contribution is welcome and should respect the `contribution
guidelines <.github/CONTRIBUTING.md>`__. Each member of the project is
expected to follow the `code of conduct <.github/CODE_OF_CONDUCT.md>`__.

Support
-------

You can ask questions and join the development discussion:

-  On the POT `slack channel <https://pot-toolbox.slack.com>`__
-  On the POT `gitter channel <https://gitter.im/PythonOT/community>`__
-  On the POT `mailing
   list <https://mail.python.org/mm3/mailman3/lists/pot.python.org/>`__

You can also post bug reports and feature requests in Github issues.
Make sure to read our `guidelines <.github/CONTRIBUTING.md>`__ first.

References
----------

[1] Bonneel, N., Van De Panne, M., Paris, S., & Heidrich, W. (2011,
December). `Displacement interpolation using Lagrangian mass
transport <https://people.csail.mit.edu/sparis/publi/2011/sigasia/Bonneel_11_Displacement_Interpolation.pdf>`__.
In ACM Transactions on Graphics (TOG) (Vol. 30, No. 6, p. 158). ACM.

[2] Cuturi, M. (2013). `Sinkhorn distances: Lightspeed computation of
optimal transport <https://arxiv.org/pdf/1306.0895.pdf>`__. In Advances
in Neural Information Processing Systems (pp. 2292-2300).

[3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G.
(2015). `Iterative Bregman projections for regularized transportation
problems <https://arxiv.org/pdf/1412.5154.pdf>`__. SIAM Journal on
Scientific Computing, 37(2), A1111-A1138.

[4] S. Nakhostin, N. Courty, R. Flamary, D. Tuia, T. Corpetti,
`Supervised planetary unmixing with optimal
transport <https://hal.archives-ouvertes.fr/hal-01377236/document>`__,
Whorkshop on Hyperspectral Image and Signal Processing : Evolution in
Remote Sensing (WHISPERS), 2016.

[5] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy, `Optimal Transport
for Domain Adaptation <https://arxiv.org/pdf/1507.00504.pdf>`__, in IEEE
Transactions on Pattern Analysis and Machine Intelligence , vol.PP,
no.99, pp.1-1

[6] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014).
`Regularized discrete optimal
transport <https://arxiv.org/pdf/1307.5551.pdf>`__. SIAM Journal on
Imaging Sciences, 7(3), 1853-1882.

[7] Rakotomamonjy, A., Flamary, R., & Courty, N. (2015). `Generalized
conditional gradient: analysis of convergence and
applications <https://arxiv.org/pdf/1510.06567.pdf>`__. arXiv preprint
arXiv:1510.06567.

[8] M. Perrot, N. Courty, R. Flamary, A. Habrard (2016), `Mapping
estimation for discrete optimal
transport <http://remi.flamary.com/biblio/perrot2016mapping.pdf>`__,
Neural Information Processing Systems (NIPS).

[9] Schmitzer, B. (2016). `Stabilized Sparse Scaling Algorithms for
Entropy Regularized Transport
Problems <https://arxiv.org/pdf/1610.06519.pdf>`__. arXiv preprint
arXiv:1610.06519.

[10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016).
`Scaling algorithms for unbalanced transport
problems <https://arxiv.org/pdf/1607.05816.pdf>`__. arXiv preprint
arXiv:1607.05816.

[11] Flamary, R., Cuturi, M., Courty, N., & Rakotomamonjy, A. (2016).
`Wasserstein Discriminant
Analysis <https://arxiv.org/pdf/1608.08063.pdf>`__. arXiv preprint
arXiv:1608.08063.

[12] Gabriel Peyré, Marco Cuturi, and Justin Solomon (2016),
`Gromov-Wasserstein averaging of kernel and distance
matrices <http://proceedings.mlr.press/v48/peyre16.html>`__
International Conference on Machine Learning (ICML).

[13] Mémoli, Facundo (2011). `Gromov–Wasserstein distances and the
metric approach to object
matching <https://media.adelaide.edu.au/acvt/Publications/2011/2011-Gromov%E2%80%93Wasserstein%20Distances%20and%20the%20Metric%20Approach%20to%20Object%20Matching.pdf>`__.
Foundations of computational mathematics 11.4 : 417-487.

[14] Knott, M. and Smith, C. S. (1984).`On the optimal mapping of
distributions <https://link.springer.com/article/10.1007/BF00934745>`__,
Journal of Optimization Theory and Applications Vol 43.

[15] Peyré, G., & Cuturi, M. (2018). `Computational Optimal
Transport <https://arxiv.org/pdf/1803.00567.pdf>`__ .

[16] Agueh, M., & Carlier, G. (2011). `Barycenters in the Wasserstein
space <https://hal.archives-ouvertes.fr/hal-00637399/document>`__. SIAM
Journal on Mathematical Analysis, 43(2), 904-924.

[17] Blondel, M., Seguy, V., & Rolet, A. (2018). `Smooth and Sparse
Optimal Transport <https://arxiv.org/abs/1710.06276>`__. Proceedings of
the Twenty-First International Conference on Artificial Intelligence and
Statistics (AISTATS).

[18] Genevay, A., Cuturi, M., Peyré, G. & Bach, F. (2016) `Stochastic
Optimization for Large-scale Optimal
Transport <https://arxiv.org/abs/1605.08527>`__. Advances in Neural
Information Processing Systems (2016).

[19] Seguy, V., Bhushan Damodaran, B., Flamary, R., Courty, N., Rolet,
A.& Blondel, M. `Large-scale Optimal Transport and Mapping
Estimation <https://arxiv.org/pdf/1711.02283.pdf>`__. International
Conference on Learning Representation (2018)

[20] Cuturi, M. and Doucet, A. (2014) `Fast Computation of Wasserstein
Barycenters <http://proceedings.mlr.press/v32/cuturi14.html>`__.
International Conference in Machine Learning

[21] Solomon, J., De Goes, F., Peyré, G., Cuturi, M., Butscher, A.,
Nguyen, A. & Guibas, L. (2015). `Convolutional wasserstein distances:
Efficient optimal transportation on geometric
domains <https://dl.acm.org/citation.cfm?id=2766963>`__. ACM
Transactions on Graphics (TOG), 34(4), 66.

[22] J. Altschuler, J.Weed, P. Rigollet, (2017) `Near-linear time
approximation algorithms for optimal transport via Sinkhorn
iteration <https://papers.nips.cc/paper/6792-near-linear-time-approximation-algorithms-for-optimal-transport-via-sinkhorn-iteration.pdf>`__,
Advances in Neural Information Processing Systems (NIPS) 31

[23] Aude, G., Peyré, G., Cuturi, M., `Learning Generative Models with
Sinkhorn Divergences <https://arxiv.org/abs/1706.00292>`__, Proceedings
of the Twenty-First International Conference on Artficial Intelligence
and Statistics, (AISTATS) 21, 2018

[24] Vayer, T., Chapel, L., Flamary, R., Tavenard, R. and Courty, N.
(2019). `Optimal Transport for structured data with application on
graphs <http://proceedings.mlr.press/v97/titouan19a.html>`__ Proceedings
of the 36th International Conference on Machine Learning (ICML).

[25] Frogner C., Zhang C., Mobahi H., Araya-Polo M., Poggio T. (2015).
`Learning with a Wasserstein Loss <http://cbcl.mit.edu/wasserstein/>`__
Advances in Neural Information Processing Systems (NIPS).

[26] Alaya M. Z., Bérar M., Gasso G., Rakotomamonjy A. (2019).
`Screening Sinkhorn Algorithm for Regularized Optimal
Transport <https://papers.nips.cc/paper/9386-screening-sinkhorn-algorithm-for-regularized-optimal-transport>`__,
Advances in Neural Information Processing Systems 33 (NeurIPS).

[27] Redko I., Courty N., Flamary R., Tuia D. (2019). `Optimal Transport
for Multi-source Domain Adaptation under Target
Shift <http://proceedings.mlr.press/v89/redko19a.html>`__, Proceedings
of the Twenty-Second International Conference on Artificial Intelligence
and Statistics (AISTATS) 22, 2019.

[28] Caffarelli, L. A., McCann, R. J. (2010). `Free boundaries in
optimal transport and Monge-Ampere obstacle
problems <http://www.math.toronto.edu/~mccann/papers/annals2010.pdf>`__,
Annals of mathematics, 673-730.

[29] Chapel, L., Alaya, M., Gasso, G. (2020). `Partial Optimal Transport
with Applications on Positive-Unlabeled
Learning <https://arxiv.org/abs/2002.08276>`__, Advances in Neural
Information Processing Systems (NeurIPS), 2020.

[30] Flamary R., Courty N., Tuia D., Rakotomamonjy A. (2014). `Optimal
transport with Laplacian regularization: Applications to domain
adaptation and shape
matching <https://remi.flamary.com/biblio/flamary2014optlaplace.pdf>`__,
NIPS Workshop on Optimal Transport and Machine Learning OTML, 2014.

[31] Bonneel, Nicolas, et al. `Sliced and radon wasserstein barycenters
of
measures <https://perso.liris.cnrs.fr/nicolas.bonneel/WassersteinSliced-JMIV.pdf>`__,
Journal of Mathematical Imaging and Vision 51.1 (2015): 22-45

[32] Huang, M., Ma S., Lai, L. (2021). `A Riemannian Block Coordinate
Descent Method for Computing the Projection Robust Wasserstein
Distance <http://proceedings.mlr.press/v139/huang21e.html>`__,
Proceedings of the 38th International Conference on Machine Learning
(ICML).

[33] Kerdoncuff T., Emonet R., Marc S. `Sampled Gromov
Wasserstein <https://hal.archives-ouvertes.fr/hal-03232509/document>`__,
Machine Learning Journal (MJL), 2021

[34] Feydy, J., Séjourné, T., Vialard, F. X., Amari, S. I., Trouvé, A.,
& Peyré, G. (2019, April). `Interpolating between optimal transport and
MMD using Sinkhorn
divergences <http://proceedings.mlr.press/v89/feydy19a/feydy19a.pdf>`__.
In The 22nd International Conference on Artificial Intelligence and
Statistics (pp. 2681-2690). PMLR.

[35] Deshpande, I., Hu, Y. T., Sun, R., Pyrros, A., Siddiqui, N.,
Koyejo, S., ... & Schwing, A. G. (2019). `Max-sliced wasserstein
distance and its use for
gans <https://openaccess.thecvf.com/content_CVPR_2019/papers/Deshpande_Max-Sliced_Wasserstein_Distance_and_Its_Use_for_GANs_CVPR_2019_paper.pdf>`__.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (pp. 10648-10656).

.. |PyPI version| image:: https://badge.fury.io/py/POT.svg
   :target: https://badge.fury.io/py/POT
.. |Anaconda Cloud| image:: https://anaconda.org/conda-forge/pot/badges/version.svg
   :target: https://anaconda.org/conda-forge/pot
.. |Build Status| image:: https://github.com/PythonOT/POT/workflows/build/badge.svg?branch=master&event=push
   :target: https://github.com/PythonOT/POT/actions
.. |Codecov Status| image:: https://codecov.io/gh/PythonOT/POT/branch/master/graph/badge.svg
   :target: https://codecov.io/gh/PythonOT/POT
.. |Downloads| image:: https://pepy.tech/badge/pot
   :target: https://pepy.tech/project/pot
.. |Anaconda downloads| image:: https://anaconda.org/conda-forge/pot/badges/downloads.svg
   :target: https://anaconda.org/conda-forge/pot
.. |License| image:: https://anaconda.org/conda-forge/pot/badges/license.svg
   :target: https://github.com/PythonOT/POT/blob/master/LICENSE