summaryrefslogtreecommitdiff
path: root/examples/backends/plot_optim_gromov_pytorch.py
blob: 465f61237bce89087b0b031220f83644a4a58eef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
r"""
=================================
Optimizing the Gromov-Wasserstein distance with PyTorch
=================================

In this exemple we use the pytorch backend to optimize the  Gromov-Wasserstein
(GW) loss between two graphs expressed as empirical distribution.

In the first example we optimize the weights on the node of a simple template
graph so that it minimizes the GW with a given Stochastic Block Model graph.
We can see that this actually recovers the proportion of classes in the SBM
and allows for an accurate clustering of the nodes using the GW optimal plan.

In a second example we optimize simultaneously the weights and the sructure of
the template graph which allows us to perform graph compression and to recover
other properties of the SBM.

The backend actually uses the gradients expressed in [38] to optimize the
weights.

[38] C. Vincent-Cuaz, T. Vayer, R. Flamary, M. Corneli, N. Courty, Online Graph
Dictionary Learning, International Conference on Machine Learning (ICML), 2021.

"""
# Author: Rémi Flamary <remi.flamary@polytechnique.edu>
#
# License: MIT License

# sphinx_gallery_thumbnail_number = 3

from sklearn.manifold import MDS
import numpy as np
import matplotlib.pylab as pl
import torch

import ot
from ot.gromov import gromov_wasserstein2

# %%
# Graph generation
# ---------------

rng = np.random.RandomState(42)


def get_sbm(n, nc, ratio, P):
    nbpc = np.round(n * ratio).astype(int)
    n = np.sum(nbpc)
    C = np.zeros((n, n))
    for c1 in range(nc):
        for c2 in range(c1 + 1):
            if c1 == c2:
                for i in range(np.sum(nbpc[:c1]), np.sum(nbpc[:c1 + 1])):
                    for j in range(np.sum(nbpc[:c2]), i):
                        if rng.rand() <= P[c1, c2]:
                            C[i, j] = 1
            else:
                for i in range(np.sum(nbpc[:c1]), np.sum(nbpc[:c1 + 1])):
                    for j in range(np.sum(nbpc[:c2]), np.sum(nbpc[:c2 + 1])):
                        if rng.rand() <= P[c1, c2]:
                            C[i, j] = 1

    return C + C.T


n = 100
nc = 3
ratio = np.array([.5, .3, .2])
P = np.array(0.6 * np.eye(3) + 0.05 * np.ones((3, 3)))
C1 = get_sbm(n, nc, ratio, P)

# get 2d position for nodes
x1 = MDS(dissimilarity='precomputed', random_state=0).fit_transform(1 - C1)


def plot_graph(x, C, color='C0', s=None):
    for j in range(C.shape[0]):
        for i in range(j):
            if C[i, j] > 0:
                pl.plot([x[i, 0], x[j, 0]], [x[i, 1], x[j, 1]], alpha=0.2, color='k')
    pl.scatter(x[:, 0], x[:, 1], c=color, s=s, zorder=10, edgecolors='k', cmap='tab10', vmax=9)


pl.figure(1, (10, 5))
pl.clf()
pl.subplot(1, 2, 1)
plot_graph(x1, C1, color='C0')
pl.title("SBM Graph")
pl.axis("off")
pl.subplot(1, 2, 2)
pl.imshow(C1, interpolation='nearest')
pl.title("Adjacency matrix")
pl.axis("off")


# %%
# Optimizing the weights of a simple template C0=eye(3) to fit Graph 1
# ------------------------------------------------
# The adajacency matrix C1 is block diagonal with 3 blocks. We want to
# optimize the weights of a simple template C0=eye(3) and see if we can
# recover the proportion of classes from the SBM (up to a permutation).

C0 = np.eye(3)


def min_weight_gw(C1, C2, a2, nb_iter_max=100, lr=1e-2):
    """ solve min_a GW(C1,C2,a, a2) by gradient descent"""

    # use pyTorch for our data
    C1_torch = torch.tensor(C1)
    C2_torch = torch.tensor(C2)

    a0 = rng.rand(C1.shape[0])  # random_init
    a0 /= a0.sum()  # on simplex
    a1_torch = torch.tensor(a0).requires_grad_(True)
    a2_torch = torch.tensor(a2)

    loss_iter = []

    for i in range(nb_iter_max):

        loss = gromov_wasserstein2(C1_torch, C2_torch, a1_torch, a2_torch)

        loss_iter.append(loss.clone().detach().cpu().numpy())
        loss.backward()

        #print("{:03d} | {}".format(i, loss_iter[-1]))

        # performs a step of projected gradient descent
        with torch.no_grad():
            grad = a1_torch.grad
            a1_torch -= grad * lr   # step
            a1_torch.grad.zero_()
            a1_torch.data = ot.utils.proj_simplex(a1_torch)

    a1 = a1_torch.clone().detach().cpu().numpy()

    return a1, loss_iter


a0_est, loss_iter0 = min_weight_gw(C0, C1, ot.unif(n), nb_iter_max=100, lr=1e-2)

pl.figure(2)
pl.plot(loss_iter0)
pl.title("Loss along iterations")

print("Estimated weights : ", a0_est)
print("True proportions : ", ratio)


# %%
# It is clear that the optimization has converged and that we recover the
# ratio of the different classes in the SBM graph up to a permutation.


# %%
# Community clustering with uniform and estimated weights
# --------------------------------------------
# The GW OT  plan can be used to perform a clustering of the nodes of a graph
# when computing the GW with a simple template like C0 by labeling nodes in
# the original graph using by the index of the noe in the template receiving
# the most mass.
#
# We show here the result of such a clustering when using uniform weights on
# the template C0 and when using the optimal weights previously estimated.


T_unif = ot.gromov_wasserstein(C1, C0, ot.unif(n), ot.unif(3))
label_unif = T_unif.argmax(1)

T_est = ot.gromov_wasserstein(C1, C0, ot.unif(n), a0_est)
label_est = T_est.argmax(1)

pl.figure(3, (10, 5))
pl.clf()
pl.subplot(1, 2, 1)
plot_graph(x1, C1, color=label_unif)
pl.title("Graph clustering unif. weights")
pl.axis("off")
pl.subplot(1, 2, 2)
plot_graph(x1, C1, color=label_est)
pl.title("Graph clustering est. weights")
pl.axis("off")


# %%
# Graph compression with GW
# -------------------------

# Now we  optimize both the weights and structure of a small graph that
# minimize the GW distance wrt our data graph. This can be seen as graph
# compression but can also recover important properties of an SBM such
# as its class proportion but also its matrix of probability of links between
# classes


def graph_compession_gw(nb_nodes, C2, a2, nb_iter_max=100, lr=1e-2):
    """ solve min_a GW(C1,C2,a, a2) by gradient descent"""

    # use pyTorch for our data

    C2_torch = torch.tensor(C2)
    a2_torch = torch.tensor(a2)

    a0 = rng.rand(nb_nodes)  # random_init
    a0 /= a0.sum()  # on simplex
    a1_torch = torch.tensor(a0).requires_grad_(True)
    C0 = np.eye(nb_nodes)
    C1_torch = torch.tensor(C0).requires_grad_(True)

    loss_iter = []

    for i in range(nb_iter_max):

        loss = gromov_wasserstein2(C1_torch, C2_torch, a1_torch, a2_torch)

        loss_iter.append(loss.clone().detach().cpu().numpy())
        loss.backward()

        #print("{:03d} | {}".format(i, loss_iter[-1]))

        # performs a step of projected gradient descent
        with torch.no_grad():
            grad = a1_torch.grad
            a1_torch -= grad * lr   # step
            a1_torch.grad.zero_()
            a1_torch.data = ot.utils.proj_simplex(a1_torch)

            grad = C1_torch.grad
            C1_torch -= grad * lr   # step
            C1_torch.grad.zero_()
            C1_torch.data = torch.clamp(C1_torch, 0, 1)

    a1 = a1_torch.clone().detach().cpu().numpy()
    C1 = C1_torch.clone().detach().cpu().numpy()

    return a1, C1, loss_iter


nb_nodes = 3
a0_est2, C0_est2, loss_iter2 = graph_compession_gw(nb_nodes, C1, ot.unif(n),
                                                   nb_iter_max=100, lr=5e-2)

pl.figure(4)
pl.plot(loss_iter2)
pl.title("Loss along iterations")


print("Estimated weights : ", a0_est2)
print("True proportions : ", ratio)

pl.figure(6, (10, 3.5))
pl.clf()
pl.subplot(1, 2, 1)
pl.imshow(P, vmin=0, vmax=1)
pl.title('True SBM P matrix')
pl.subplot(1, 2, 2)
pl.imshow(C0_est2, vmin=0, vmax=1)
pl.title('Estimated C0 matrix')
pl.colorbar()