summaryrefslogtreecommitdiff
path: root/examples/backends/plot_sliced_wass_grad_flow_pytorch.py
blob: cf5d64d54ea9c6a984910c06d9eac8f8081c32e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
r"""
=================================
Sliced Wasserstein barycenter and gradient flow with PyTorch
=================================

In this exemple we use the pytorch backend to optimize the sliced Wasserstein
loss between two empirical distributions [31].

In the first example one we perform a
gradient flow on the support of a distribution that minimize the sliced
Wassersein distance as poposed in [36].

In the second exemple we optimize with a gradient descent the sliced
Wasserstein barycenter between two distributions as in [31].

[31] Bonneel, Nicolas, et al. "Sliced and radon wasserstein barycenters of
measures." Journal of Mathematical Imaging and Vision 51.1 (2015): 22-45

[36] Liutkus, A., Simsekli, U., Majewski, S., Durmus, A., & Stöter, F. R.
(2019, May). Sliced-Wasserstein flows: Nonparametric generative modeling
via optimal transport and diffusions. In International Conference on
Machine Learning (pp. 4104-4113). PMLR.


"""
# Author: Rémi Flamary <remi.flamary@polytechnique.edu>
#
# License: MIT License

# sphinx_gallery_thumbnail_number = 4


# %%
# Loading the data


import numpy as np
import matplotlib.pylab as pl
import torch
import ot
import matplotlib.animation as animation

I1 = pl.imread('../../data/redcross.png').astype(np.float64)[::4, ::4, 2]
I2 = pl.imread('../../data/tooth.png').astype(np.float64)[::4, ::4, 2]

sz = I2.shape[0]
XX, YY = np.meshgrid(np.arange(sz), np.arange(sz))

x1 = np.stack((XX[I1 == 0], YY[I1 == 0]), 1) * 1.0
x2 = np.stack((XX[I2 == 0] + 60, -YY[I2 == 0] + 32), 1) * 1.0
x3 = np.stack((XX[I2 == 0], -YY[I2 == 0] + 32), 1) * 1.0

pl.figure(1, (8, 4))
pl.scatter(x1[:, 0], x1[:, 1], alpha=0.5)
pl.scatter(x2[:, 0], x2[:, 1], alpha=0.5)

# %%
# Sliced Wasserstein gradient flow with Pytorch
# ---------------------------------------------


device = "cuda" if torch.cuda.is_available() else "cpu"

# use pyTorch for our data
x1_torch = torch.tensor(x1).to(device=device).requires_grad_(True)
x2_torch = torch.tensor(x2).to(device=device)


lr = 1e3
nb_iter_max = 100

x_all = np.zeros((nb_iter_max, x1.shape[0], 2))

loss_iter = []

# generator for random permutations
gen = torch.Generator()
gen.manual_seed(42)

for i in range(nb_iter_max):

    loss = ot.sliced_wasserstein_distance(x1_torch, x2_torch, n_projections=20, seed=gen)

    loss_iter.append(loss.clone().detach().cpu().numpy())
    loss.backward()

    # performs a step of projected gradient descent
    with torch.no_grad():
        grad = x1_torch.grad
        x1_torch -= grad * lr / (1 + i / 5e1)  # step
        x1_torch.grad.zero_()
        x_all[i, :, :] = x1_torch.clone().detach().cpu().numpy()

xb = x1_torch.clone().detach().cpu().numpy()

pl.figure(2, (8, 4))
pl.scatter(x1[:, 0], x1[:, 1], alpha=0.5, label='$\mu^{(0)}$')
pl.scatter(x2[:, 0], x2[:, 1], alpha=0.5, label=r'$\nu$')
pl.scatter(xb[:, 0], xb[:, 1], alpha=0.5, label='$\mu^{(100)}$')
pl.title('Sliced Wasserstein gradient flow')
pl.legend()
ax = pl.axis()

# %%
# Animate trajectories of the gradient flow along iteration
# -------------------------------------------------------

pl.figure(3, (8, 4))


def _update_plot(i):
    pl.clf()
    pl.scatter(x1[:, 0], x1[:, 1], alpha=0.5, label='$\mu^{(0)}$')
    pl.scatter(x2[:, 0], x2[:, 1], alpha=0.5, label=r'$\nu$')
    pl.scatter(x_all[i, :, 0], x_all[i, :, 1], alpha=0.5, label='$\mu^{(100)}$')
    pl.title('Sliced Wasserstein gradient flow Iter. {}'.format(i))
    pl.axis(ax)
    return 1


ani = animation.FuncAnimation(pl.gcf(), _update_plot, nb_iter_max, interval=100, repeat_delay=2000)

# %%
# Compute the Sliced Wasserstein Barycenter
#
x1_torch = torch.tensor(x1).to(device=device)
x3_torch = torch.tensor(x3).to(device=device)
xbinit = np.random.randn(500, 2) * 10 + 16
xbary_torch = torch.tensor(xbinit).to(device=device).requires_grad_(True)

lr = 1e3
nb_iter_max = 100

x_all = np.zeros((nb_iter_max, xbary_torch.shape[0], 2))

loss_iter = []

# generator for random permutations
gen = torch.Generator()
gen.manual_seed(42)

alpha = 0.5

for i in range(nb_iter_max):

    loss = alpha * ot.sliced_wasserstein_distance(xbary_torch, x3_torch, n_projections=50, seed=gen) \
        + (1 - alpha) * ot.sliced_wasserstein_distance(xbary_torch, x1_torch, n_projections=50, seed=gen)

    loss_iter.append(loss.clone().detach().cpu().numpy())
    loss.backward()

    # performs a step of projected gradient descent
    with torch.no_grad():
        grad = xbary_torch.grad
        xbary_torch -= grad * lr  # / (1 + i / 5e1)  # step
        xbary_torch.grad.zero_()
        x_all[i, :, :] = xbary_torch.clone().detach().cpu().numpy()

xb = xbary_torch.clone().detach().cpu().numpy()

pl.figure(4, (8, 4))
pl.scatter(x1[:, 0], x1[:, 1], alpha=0.5, label='$\mu$')
pl.scatter(x2[:, 0], x2[:, 1], alpha=0.5, label=r'$\nu$')
pl.scatter(xb[:, 0] + 30, xb[:, 1], alpha=0.5, label='Barycenter')
pl.title('Sliced Wasserstein barycenter')
pl.legend()
ax = pl.axis()


# %%
# Animate trajectories of the barycenter along gradient descent
# -------------------------------------------------------

pl.figure(5, (8, 4))


def _update_plot(i):
    pl.clf()
    pl.scatter(x1[:, 0], x1[:, 1], alpha=0.5, label='$\mu^{(0)}$')
    pl.scatter(x2[:, 0], x2[:, 1], alpha=0.5, label=r'$\nu$')
    pl.scatter(x_all[i, :, 0] + 30, x_all[i, :, 1], alpha=0.5, label='$\mu^{(100)}$')
    pl.title('Sliced Wasserstein barycenter Iter. {}'.format(i))
    pl.axis(ax)
    return 1


ani = animation.FuncAnimation(pl.gcf(), _update_plot, nb_iter_max, interval=100, repeat_delay=2000)