summaryrefslogtreecommitdiff
path: root/examples/backends/plot_unmix_optim_torch.py
blob: 9ae66e943e05d46d397c199549473a4e36ac16b7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# -*- coding: utf-8 -*-
r"""
=================================
Wasserstein unmixing with PyTorch
=================================

In this example we estimate mixing parameters from distributions that minimize
the Wasserstein distance. In other words we suppose that a target
distribution :math:`\mu^t` can be expressed as a weighted sum of source
distributions :math:`\mu^s_k` with the following model:

.. math::
    \mu^t = \sum_{k=1}^K w_k\mu^s_k

where :math:`\mathbf{w}` is a vector of size :math:`K` and belongs in the
distribution simplex :math:`\Delta_K`.

In order to estimate this weight vector we propose to optimize the Wasserstein
distance between the model and the observed :math:`\mu^t` with respect to
the vector. This leads to the following optimization problem:

.. math::
    \min_{\mathbf{w}\in\Delta_K} \quad W \left(\mu^t,\sum_{k=1}^K w_k\mu^s_k\right)

This minimization is done in this example with a simple projected gradient
descent in PyTorch. We use the automatic backend of POT that allows us to
compute the Wasserstein distance with :any:`ot.emd2` with
differentiable losses.

"""

# Author: Remi Flamary <remi.flamary@polytechnique.edu>
#
# License: MIT License

# sphinx_gallery_thumbnail_number = 2

import numpy as np
import matplotlib.pylab as pl
import ot
import torch


##############################################################################
# Generate data
# -------------

#%% Data

nt = 100
nt1 = 10  #

ns1 = 50
ns = 2 * ns1

rng = np.random.RandomState(2)

xt = rng.randn(nt, 2) * 0.2
xt[:nt1, 0] += 1
xt[nt1:, 1] += 1


xs1 = rng.randn(ns1, 2) * 0.2
xs1[:, 0] += 1
xs2 = rng.randn(ns1, 2) * 0.2
xs2[:, 1] += 1

xs = np.concatenate((xs1, xs2))

# Sample reweighting matrix H
H = np.zeros((ns, 2))
H[:ns1, 0] = 1 / ns1
H[ns1:, 1] = 1 / ns1
# each columns sums to 1 and has weights only for samples form the
# corresponding source distribution

M = ot.dist(xs, xt)

##############################################################################
# Plot data
# ---------

#%% plot the distributions

pl.figure(1)
pl.scatter(xt[:, 0], xt[:, 1], label='Target $\mu^t$', alpha=0.5)
pl.scatter(xs1[:, 0], xs1[:, 1], label='Source $\mu^s_1$', alpha=0.5)
pl.scatter(xs2[:, 0], xs2[:, 1], label='Source $\mu^s_2$', alpha=0.5)
pl.title('Sources and Target distributions')
pl.legend()


##############################################################################
# Optimization of the model wrt the Wasserstein distance
# ------------------------------------------------------


#%% Weights optimization with gradient descent

# convert numpy arrays to torch tensors
H2 = torch.tensor(H)
M2 = torch.tensor(M)

# weights for the source distributions
w = torch.tensor(ot.unif(2), requires_grad=True)

# uniform weights for target
b = torch.tensor(ot.unif(nt))

lr = 2e-3  # learning rate
niter = 500  # number of iterations
losses = []  # loss along the iterations

# loss for the minimal Wasserstein estimator


def get_loss(w):
    a = torch.mv(H2, w)  # distribution reweighting
    return ot.emd2(a, b, M2)  # squared Wasserstein 2


for i in range(niter):

    loss = get_loss(w)
    losses.append(float(loss))

    loss.backward()

    with torch.no_grad():
        w -= lr * w.grad  # gradient step
        w[:] = ot.utils.proj_simplex(w)  # projection on the simplex

    w.grad.zero_()


##############################################################################
# Estimated weights and convergence of the objective
# ---------------------------------------------------

we = w.detach().numpy()
print('Estimated mixture:', we)

pl.figure(2)
pl.semilogy(losses)
pl.grid()
pl.title('Wasserstein distance')
pl.xlabel("Iterations")

##############################################################################
# Ploting the reweighted source distribution
# ------------------------------------------

pl.figure(3)

# compute source weights
ws = H.dot(we)

pl.scatter(xt[:, 0], xt[:, 1], label='Target $\mu^t$', alpha=0.5)
pl.scatter(xs[:, 0], xs[:, 1], color='C3', s=ws * 20 * ns, label='Weighted sources $\sum_{k} w_k\mu^s_k$', alpha=0.5)
pl.title('Target and reweighted source distributions')
pl.legend()