summaryrefslogtreecommitdiff
path: root/examples/backends/plot_wass2_gan_torch.py
blob: ca5b3c96aa93a5d62153f3dd0b66e2a22921bc0a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# -*- coding: utf-8 -*-
r"""
========================================
Wasserstein 2 Minibatch GAN with PyTorch
========================================

In this example we train a Wasserstein GAN using Wasserstein 2 on minibatches
as a distribution fitting term.

We want to train a generator :math:`G_\theta` that generates realistic
data from random noise drawn form a Gaussian :math:`\mu_n` distribution so
that the data is indistinguishable from true data in the data distribution
:math:`\mu_d`. To this end Wasserstein GAN [Arjovsky2017] aim at optimizing
the parameters :math:`\theta` of the generator with the following
optimization problem:

.. math::
     \min_{\theta} W(\mu_d,G_\theta\#\mu_n)


In practice we do not have access to the full distribution :math:`\mu_d` but
samples and we cannot compute the Wasserstein distance for lare dataset.
[Arjovsky2017] proposed to approximate the dual potential of Wasserstein 1
with a neural network recovering an optimization problem similar to GAN.
In this example
we will optimize the expectation of the Wasserstein distance over minibatches
at each iterations as proposed in [Genevay2018]. Optimizing the Minibatches
of the Wasserstein distance  has been studied in[Fatras2019].

[Arjovsky2017] Arjovsky, M., Chintala, S., & Bottou, L. (2017, July).
Wasserstein generative adversarial networks. In International conference
on machine learning (pp. 214-223). PMLR.

[Genevay2018] Genevay, Aude, Gabriel Peyré, and Marco Cuturi. "Learning generative models
with sinkhorn divergences." International Conference on Artificial Intelligence
and Statistics. PMLR, 2018.

[Fatras2019] Fatras, K., Zine, Y., Flamary, R., Gribonval, R., & Courty, N.
(2020, June). Learning with minibatch Wasserstein: asymptotic and gradient
properties. In the 23nd International Conference on Artificial Intelligence
and Statistics (Vol. 108).

"""

# Author: Remi Flamary <remi.flamary@polytechnique.edu>
#
# License: MIT License

# sphinx_gallery_thumbnail_number = 3

import numpy as np
import matplotlib.pyplot as pl
import matplotlib.animation as animation
import torch
from torch import nn
import ot


# %%
# Data generation
# ---------------

torch.manual_seed(1)
sigma = 0.1
n_dims = 2
n_features = 2


def get_data(n_samples):
    c = torch.rand(size=(n_samples, 1))
    angle = c * 2 * np.pi
    x = torch.cat((torch.cos(angle), torch.sin(angle)), 1)
    x += torch.randn(n_samples, 2) * sigma
    return x


# %%
# Plot data
# ---------

# plot the distributions
x = get_data(500)
pl.figure(1)
pl.scatter(x[:, 0], x[:, 1], label='Data samples from $\mu_d$', alpha=0.5)
pl.title('Data distribution')
pl.legend()


# %%
# Generator Model
# ---------------

# define the MLP model
class Generator(torch.nn.Module):
    def __init__(self):
        super(Generator, self).__init__()
        self.fc1 = nn.Linear(n_features, 200)
        self.fc2 = nn.Linear(200, 500)
        self.fc3 = nn.Linear(500, n_dims)
        self.relu = torch.nn.ReLU()  # instead of Heaviside step fn

    def forward(self, x):
        output = self.fc1(x)
        output = self.relu(output)  # instead of Heaviside step fn
        output = self.fc2(output)
        output = self.relu(output)
        output = self.fc3(output)
        return output

# %%
# Training the model
# ------------------


G = Generator()
optimizer = torch.optim.RMSprop(G.parameters(), lr=0.00019, eps=1e-5)

# number of iteration and size of the batches
n_iter = 200  # set to 200 for doc build but 1000 is better ;)
size_batch = 500

# generate statis samples to see their trajectory along training
n_visu = 100
xnvisu = torch.randn(n_visu, n_features)
xvisu = torch.zeros(n_iter, n_visu, n_dims)

ab = torch.ones(size_batch) / size_batch
losses = []


for i in range(n_iter):

    # generate noise samples
    xn = torch.randn(size_batch, n_features)

    # generate data samples
    xd = get_data(size_batch)

    # generate sample along iterations
    xvisu[i, :, :] = G(xnvisu).detach()

    # generate smaples and compte distance matrix
    xg = G(xn)
    M = ot.dist(xg, xd)

    loss = ot.emd2(ab, ab, M)
    losses.append(float(loss.detach()))

    if i % 10 == 0:
        print("Iter: {:3d}, loss={}".format(i, losses[-1]))

    loss.backward()
    optimizer.step()

    del M

pl.figure(2)
pl.semilogy(losses)
pl.grid()
pl.title('Wasserstein distance')
pl.xlabel("Iterations")


# %%
# Plot trajectories of generated samples along iterations
# -------------------------------------------------------


pl.figure(3, (10, 10))

ivisu = [0, 10, 25, 50, 75, 125, 15, 175, 199]

for i in range(9):
    pl.subplot(3, 3, i + 1)
    pl.scatter(xd[:, 0], xd[:, 1], label='Data samples from $\mu_d$', alpha=0.1)
    pl.scatter(xvisu[ivisu[i], :, 0], xvisu[ivisu[i], :, 1], label='Data samples from $G\#\mu_n$', alpha=0.5)
    pl.xticks(())
    pl.yticks(())
    pl.title('Iter. {}'.format(ivisu[i]))
    if i == 0:
        pl.legend()

# %%
# Animate trajectories of generated samples along iteration
# -------------------------------------------------------

pl.figure(4, (8, 8))


def _update_plot(i):
    pl.clf()
    pl.scatter(xd[:, 0], xd[:, 1], label='Data samples from $\mu_d$', alpha=0.1)
    pl.scatter(xvisu[i, :, 0], xvisu[i, :, 1], label='Data samples from $G\#\mu_n$', alpha=0.5)
    pl.xticks(())
    pl.yticks(())
    pl.xlim((-1.5, 1.5))
    pl.ylim((-1.5, 1.5))
    pl.title('Iter. {}'.format(i))
    return 1


i = 0
pl.scatter(xd[:, 0], xd[:, 1], label='Data samples from $\mu_d$', alpha=0.1)
pl.scatter(xvisu[i, :, 0], xvisu[i, :, 1], label='Data samples from $G\#\mu_n$', alpha=0.5)
pl.xticks(())
pl.yticks(())
pl.xlim((-1.5, 1.5))
pl.ylim((-1.5, 1.5))
pl.title('Iter. {}'.format(ivisu[i]))


ani = animation.FuncAnimation(pl.gcf(), _update_plot, n_iter, interval=100, repeat_delay=2000)

# %%
# Generate and visualize data
# ---------------------------

size_batch = 500
xd = get_data(size_batch)
xn = torch.randn(size_batch, 2)
x = G(xn).detach().numpy()

pl.figure(5)
pl.scatter(xd[:, 0], xd[:, 1], label='Data samples from $\mu_d$', alpha=0.5)
pl.scatter(x[:, 0], x[:, 1], label='Data samples from $G\#\mu_n$', alpha=0.5)
pl.title('Sources and Target distributions')
pl.legend()