summaryrefslogtreecommitdiff
path: root/examples/barycenters/plot_free_support_barycenter.py
blob: 27ddc8e772a8fab0e98912dd9d7179bf79f6e7d7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# -*- coding: utf-8 -*-
"""
====================================================
2D free support Wasserstein barycenters of distributions
====================================================

Illustration of 2D Wasserstein barycenters if distributions are weighted
sum of diracs.

"""

# Author: Vivien Seguy <vivien.seguy@iip.ist.i.kyoto-u.ac.jp>
#
# License: MIT License

import numpy as np
import matplotlib.pylab as pl
import ot


##############################################################################
# Generate data
# -------------

N = 3
d = 2
measures_locations = []
measures_weights = []

for i in range(N):

    n_i = np.random.randint(low=1, high=20)  # nb samples

    mu_i = np.random.normal(0., 4., (d,))  # Gaussian mean

    A_i = np.random.rand(d, d)
    cov_i = np.dot(A_i, A_i.transpose())  # Gaussian covariance matrix

    x_i = ot.datasets.make_2D_samples_gauss(n_i, mu_i, cov_i)  # Dirac locations
    b_i = np.random.uniform(0., 1., (n_i,))
    b_i = b_i / np.sum(b_i)  # Dirac weights

    measures_locations.append(x_i)
    measures_weights.append(b_i)


##############################################################################
# Compute free support barycenter
# -------------------------------

k = 10  # number of Diracs of the barycenter
X_init = np.random.normal(0., 1., (k, d))  # initial Dirac locations
b = np.ones((k,)) / k  # weights of the barycenter (it will not be optimized, only the locations are optimized)

X = ot.lp.free_support_barycenter(measures_locations, measures_weights, X_init, b)


##############################################################################
# Plot data
# ---------

pl.figure(1)
for (x_i, b_i) in zip(measures_locations, measures_weights):
    color = np.random.randint(low=1, high=10 * N)
    pl.scatter(x_i[:, 0], x_i[:, 1], s=b_i * 1000, label='input measure')
pl.scatter(X[:, 0], X[:, 1], s=b * 1000, c='black', marker='^', label='2-Wasserstein barycenter')
pl.title('Data measures and their barycenter')
pl.legend(loc=0)
pl.show()