summaryrefslogtreecommitdiff
path: root/examples/domain-adaptation/plot_otda_jcpot.py
blob: c4956906d4cf91377441e8116fa8e4b91a420a18 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# -*- coding: utf-8 -*-
"""
========================
OT for multi-source target shift
========================

This example introduces a target shift problem with two 2D source and 1 target domain.

"""

# Authors: Remi Flamary <remi.flamary@unice.fr>
#          Ievgen Redko <ievgen.redko@univ-st-etienne.fr>
#
# License: MIT License

import pylab as pl
import numpy as np
import ot
from ot.datasets import make_data_classif

##############################################################################
# Generate data
# -------------
n = 50
sigma = 0.3
np.random.seed(1985)

p1 = .2
dec1 = [0, 2]

p2 = .9
dec2 = [0, -2]

pt = .4
dect = [4, 0]

xs1, ys1 = make_data_classif('2gauss_prop', n, nz=sigma, p=p1, bias=dec1)
xs2, ys2 = make_data_classif('2gauss_prop', n + 1, nz=sigma, p=p2, bias=dec2)
xt, yt = make_data_classif('2gauss_prop', n, nz=sigma, p=pt, bias=dect)

all_Xr = [xs1, xs2]
all_Yr = [ys1, ys2]
# %%

da = 1.5


def plot_ax(dec, name):
    pl.plot([dec[0], dec[0]], [dec[1] - da, dec[1] + da], 'k', alpha=0.5)
    pl.plot([dec[0] - da, dec[0] + da], [dec[1], dec[1]], 'k', alpha=0.5)
    pl.text(dec[0] - .5, dec[1] + 2, name)


##############################################################################
# Fig 1 : plots source and target samples
# ---------------------------------------

pl.figure(1)
pl.clf()
plot_ax(dec1, 'Source 1')
plot_ax(dec2, 'Source 2')
plot_ax(dect, 'Target')
pl.scatter(xs1[:, 0], xs1[:, 1], c=ys1, s=35, marker='x', cmap='Set1', vmax=9,
           label='Source 1 ({:1.2f}, {:1.2f})'.format(1 - p1, p1))
pl.scatter(xs2[:, 0], xs2[:, 1], c=ys2, s=35, marker='+', cmap='Set1', vmax=9,
           label='Source 2 ({:1.2f}, {:1.2f})'.format(1 - p2, p2))
pl.scatter(xt[:, 0], xt[:, 1], c=yt, s=35, marker='o', cmap='Set1', vmax=9,
           label='Target ({:1.2f}, {:1.2f})'.format(1 - pt, pt))
pl.title('Data')

pl.legend()
pl.axis('equal')
pl.axis('off')

##############################################################################
# Instantiate Sinkhorn transport algorithm and fit them for all source domains
# ----------------------------------------------------------------------------
ot_sinkhorn = ot.da.SinkhornTransport(reg_e=1e-1, metric='sqeuclidean')


def print_G(G, xs, ys, xt):
    for i in range(G.shape[0]):
        for j in range(G.shape[1]):
            if G[i, j] > 5e-4:
                if ys[i]:
                    c = 'b'
                else:
                    c = 'r'
                pl.plot([xs[i, 0], xt[j, 0]], [xs[i, 1], xt[j, 1]], c, alpha=.2)


##############################################################################
# Fig 2 : plot optimal couplings and transported samples
# ------------------------------------------------------
pl.figure(2)
pl.clf()
plot_ax(dec1, 'Source 1')
plot_ax(dec2, 'Source 2')
plot_ax(dect, 'Target')
print_G(ot_sinkhorn.fit(Xs=xs1, Xt=xt).coupling_, xs1, ys1, xt)
print_G(ot_sinkhorn.fit(Xs=xs2, Xt=xt).coupling_, xs2, ys2, xt)
pl.scatter(xs1[:, 0], xs1[:, 1], c=ys1, s=35, marker='x', cmap='Set1', vmax=9)
pl.scatter(xs2[:, 0], xs2[:, 1], c=ys2, s=35, marker='+', cmap='Set1', vmax=9)
pl.scatter(xt[:, 0], xt[:, 1], c=yt, s=35, marker='o', cmap='Set1', vmax=9)

pl.plot([], [], 'r', alpha=.2, label='Mass from Class 1')
pl.plot([], [], 'b', alpha=.2, label='Mass from Class 2')

pl.title('Independent OT')

pl.legend()
pl.axis('equal')
pl.axis('off')

##############################################################################
# Instantiate JCPOT adaptation algorithm and fit it
# ----------------------------------------------------------------------------
otda = ot.da.JCPOTTransport(reg_e=1, max_iter=1000, metric='sqeuclidean', tol=1e-9, verbose=True, log=True)
otda.fit(all_Xr, all_Yr, xt)

ws1 = otda.proportions_.dot(otda.log_['D2'][0])
ws2 = otda.proportions_.dot(otda.log_['D2'][1])

pl.figure(3)
pl.clf()
plot_ax(dec1, 'Source 1')
plot_ax(dec2, 'Source 2')
plot_ax(dect, 'Target')
print_G(ot.bregman.sinkhorn(ws1, [], otda.log_['M'][0], reg=1e-1), xs1, ys1, xt)
print_G(ot.bregman.sinkhorn(ws2, [], otda.log_['M'][1], reg=1e-1), xs2, ys2, xt)
pl.scatter(xs1[:, 0], xs1[:, 1], c=ys1, s=35, marker='x', cmap='Set1', vmax=9)
pl.scatter(xs2[:, 0], xs2[:, 1], c=ys2, s=35, marker='+', cmap='Set1', vmax=9)
pl.scatter(xt[:, 0], xt[:, 1], c=yt, s=35, marker='o', cmap='Set1', vmax=9)

pl.plot([], [], 'r', alpha=.2, label='Mass from Class 1')
pl.plot([], [], 'b', alpha=.2, label='Mass from Class 2')

pl.title('OT with prop estimation ({:1.3f},{:1.3f})'.format(otda.proportions_[0], otda.proportions_[1]))

pl.legend()
pl.axis('equal')
pl.axis('off')

##############################################################################
# Run oracle transport algorithm with known proportions
# ----------------------------------------------------------------------------
h_res = np.array([1 - pt, pt])

ws1 = h_res.dot(otda.log_['D2'][0])
ws2 = h_res.dot(otda.log_['D2'][1])

pl.figure(4)
pl.clf()
plot_ax(dec1, 'Source 1')
plot_ax(dec2, 'Source 2')
plot_ax(dect, 'Target')
print_G(ot.bregman.sinkhorn(ws1, [], otda.log_['M'][0], reg=1e-1), xs1, ys1, xt)
print_G(ot.bregman.sinkhorn(ws2, [], otda.log_['M'][1], reg=1e-1), xs2, ys2, xt)
pl.scatter(xs1[:, 0], xs1[:, 1], c=ys1, s=35, marker='x', cmap='Set1', vmax=9)
pl.scatter(xs2[:, 0], xs2[:, 1], c=ys2, s=35, marker='+', cmap='Set1', vmax=9)
pl.scatter(xt[:, 0], xt[:, 1], c=yt, s=35, marker='o', cmap='Set1', vmax=9)

pl.plot([], [], 'r', alpha=.2, label='Mass from Class 1')
pl.plot([], [], 'b', alpha=.2, label='Mass from Class 2')

pl.title('OT with known proportion ({:1.1f},{:1.1f})'.format(h_res[0], h_res[1]))

pl.legend()
pl.axis('equal')
pl.axis('off')
pl.show()