summaryrefslogtreecommitdiff
path: root/examples/domain-adaptation/plot_otda_linear_mapping.py
blob: dbf16b8f47602a0fd4603e53faf41a4528978c29 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
============================
Linear OT mapping estimation
============================


"""

# Author: Remi Flamary <remi.flamary@unice.fr>
#
# License: MIT License

# sphinx_gallery_thumbnail_number = 2

import numpy as np
import pylab as pl
import ot

##############################################################################
# Generate data
# -------------

n = 1000
d = 2
sigma = .1

# source samples
angles = np.random.rand(n, 1) * 2 * np.pi
xs = np.concatenate((np.sin(angles), np.cos(angles)),
                    axis=1) + sigma * np.random.randn(n, 2)
xs[:n // 2, 1] += 2


# target samples
anglet = np.random.rand(n, 1) * 2 * np.pi
xt = np.concatenate((np.sin(anglet), np.cos(anglet)),
                    axis=1) + sigma * np.random.randn(n, 2)
xt[:n // 2, 1] += 2


A = np.array([[1.5, .7], [.7, 1.5]])
b = np.array([[4, 2]])
xt = xt.dot(A) + b

##############################################################################
# Plot data
# ---------

pl.figure(1, (5, 5))
pl.plot(xs[:, 0], xs[:, 1], '+')
pl.plot(xt[:, 0], xt[:, 1], 'o')


##############################################################################
# Estimate linear mapping and transport
# -------------------------------------

Ae, be = ot.da.OT_mapping_linear(xs, xt)

xst = xs.dot(Ae) + be


##############################################################################
# Plot transported samples
# ------------------------

pl.figure(1, (5, 5))
pl.clf()
pl.plot(xs[:, 0], xs[:, 1], '+')
pl.plot(xt[:, 0], xt[:, 1], 'o')
pl.plot(xst[:, 0], xst[:, 1], '+')

pl.show()

##############################################################################
# Load image data
# ---------------


def im2mat(I):
    """Converts and image to matrix (one pixel per line)"""
    return I.reshape((I.shape[0] * I.shape[1], I.shape[2]))


def mat2im(X, shape):
    """Converts back a matrix to an image"""
    return X.reshape(shape)


def minmax(I):
    return np.clip(I, 0, 1)


# Loading images
I1 = pl.imread('../../data/ocean_day.jpg').astype(np.float64) / 256
I2 = pl.imread('../../data/ocean_sunset.jpg').astype(np.float64) / 256


X1 = im2mat(I1)
X2 = im2mat(I2)

##############################################################################
# Estimate mapping and adapt
# ----------------------------

mapping = ot.da.LinearTransport()

mapping.fit(Xs=X1, Xt=X2)


xst = mapping.transform(Xs=X1)
xts = mapping.inverse_transform(Xt=X2)

I1t = minmax(mat2im(xst, I1.shape))
I2t = minmax(mat2im(xts, I2.shape))

# %%


##############################################################################
# Plot transformed images
# -----------------------

pl.figure(2, figsize=(10, 7))

pl.subplot(2, 2, 1)
pl.imshow(I1)
pl.axis('off')
pl.title('Im. 1')

pl.subplot(2, 2, 2)
pl.imshow(I2)
pl.axis('off')
pl.title('Im. 2')

pl.subplot(2, 2, 3)
pl.imshow(I1t)
pl.axis('off')
pl.title('Mapping Im. 1')

pl.subplot(2, 2, 4)
pl.imshow(I2t)
pl.axis('off')
pl.title('Inverse mapping Im. 2')