summaryrefslogtreecommitdiff
path: root/examples/domain-adaptation/plot_otda_mapping_colors_images.py
blob: ee5c8b0f828941280c9ef3596c4783a2fd9c0283 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# -*- coding: utf-8 -*-
"""
=====================================================
OT for image color adaptation with mapping estimation
=====================================================

OT for domain adaptation with image color adaptation [6] with mapping
estimation [8].

[6] Ferradans, S., Papadakis, N., Peyre, G., & Aujol, J. F. (2014). Regularized
discrete optimal transport. SIAM Journal on Imaging Sciences, 7(3), 1853-1882.

[8] M. Perrot, N. Courty, R. Flamary, A. Habrard, "Mapping estimation for
discrete optimal transport", Neural Information Processing Systems (NIPS), 2016.

"""

# Authors: Remi Flamary <remi.flamary@unice.fr>
#          Stanislas Chambon <stan.chambon@gmail.com>
#
# License: MIT License

# sphinx_gallery_thumbnail_number = 3

import numpy as np
import matplotlib.pylab as pl
import ot

r = np.random.RandomState(42)


def im2mat(I):
    """Converts and image to matrix (one pixel per line)"""
    return I.reshape((I.shape[0] * I.shape[1], I.shape[2]))


def mat2im(X, shape):
    """Converts back a matrix to an image"""
    return X.reshape(shape)


def minmax(I):
    return np.clip(I, 0, 1)


##############################################################################
# Generate data
# -------------

# Loading images
I1 = pl.imread('../../data/ocean_day.jpg').astype(np.float64) / 256
I2 = pl.imread('../../data/ocean_sunset.jpg').astype(np.float64) / 256


X1 = im2mat(I1)
X2 = im2mat(I2)

# training samples
nb = 1000
idx1 = r.randint(X1.shape[0], size=(nb,))
idx2 = r.randint(X2.shape[0], size=(nb,))

Xs = X1[idx1, :]
Xt = X2[idx2, :]


##############################################################################
# Domain adaptation for pixel distribution transfer
# -------------------------------------------------

# EMDTransport
ot_emd = ot.da.EMDTransport()
ot_emd.fit(Xs=Xs, Xt=Xt)
transp_Xs_emd = ot_emd.transform(Xs=X1)
Image_emd = minmax(mat2im(transp_Xs_emd, I1.shape))

# SinkhornTransport
ot_sinkhorn = ot.da.SinkhornTransport(reg_e=1e-1)
ot_sinkhorn.fit(Xs=Xs, Xt=Xt)
transp_Xs_sinkhorn = ot_sinkhorn.transform(Xs=X1)
Image_sinkhorn = minmax(mat2im(transp_Xs_sinkhorn, I1.shape))

ot_mapping_linear = ot.da.MappingTransport(
    mu=1e0, eta=1e-8, bias=True, max_iter=20, verbose=True)
ot_mapping_linear.fit(Xs=Xs, Xt=Xt)

X1tl = ot_mapping_linear.transform(Xs=X1)
Image_mapping_linear = minmax(mat2im(X1tl, I1.shape))

ot_mapping_gaussian = ot.da.MappingTransport(
    mu=1e0, eta=1e-2, sigma=1, bias=False, max_iter=10, verbose=True)
ot_mapping_gaussian.fit(Xs=Xs, Xt=Xt)

X1tn = ot_mapping_gaussian.transform(Xs=X1)  # use the estimated mapping
Image_mapping_gaussian = minmax(mat2im(X1tn, I1.shape))


##############################################################################
# Plot original images
# --------------------

pl.figure(1, figsize=(6.4, 3))
pl.subplot(1, 2, 1)
pl.imshow(I1)
pl.axis('off')
pl.title('Image 1')

pl.subplot(1, 2, 2)
pl.imshow(I2)
pl.axis('off')
pl.title('Image 2')
pl.tight_layout()


##############################################################################
# Plot pixel values distribution
# ------------------------------

pl.figure(2, figsize=(6.4, 5))

pl.subplot(1, 2, 1)
pl.scatter(Xs[:, 0], Xs[:, 2], c=Xs)
pl.axis([0, 1, 0, 1])
pl.xlabel('Red')
pl.ylabel('Blue')
pl.title('Image 1')

pl.subplot(1, 2, 2)
pl.scatter(Xt[:, 0], Xt[:, 2], c=Xt)
pl.axis([0, 1, 0, 1])
pl.xlabel('Red')
pl.ylabel('Blue')
pl.title('Image 2')
pl.tight_layout()


##############################################################################
# Plot transformed images
# -----------------------

pl.figure(2, figsize=(10, 5))

pl.subplot(2, 3, 1)
pl.imshow(I1)
pl.axis('off')
pl.title('Im. 1')

pl.subplot(2, 3, 4)
pl.imshow(I2)
pl.axis('off')
pl.title('Im. 2')

pl.subplot(2, 3, 2)
pl.imshow(Image_emd)
pl.axis('off')
pl.title('EmdTransport')

pl.subplot(2, 3, 5)
pl.imshow(Image_sinkhorn)
pl.axis('off')
pl.title('SinkhornTransport')

pl.subplot(2, 3, 3)
pl.imshow(Image_mapping_linear)
pl.axis('off')
pl.title('MappingTransport (linear)')

pl.subplot(2, 3, 6)
pl.imshow(Image_mapping_gaussian)
pl.axis('off')
pl.title('MappingTransport (gaussian)')
pl.tight_layout()

pl.show()