summaryrefslogtreecommitdiff
path: root/examples/gromov/plot_fgw_solvers.py
blob: 5f8a885c9076f07c0512007ec5cea17d94617647 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
# -*- coding: utf-8 -*-
"""
==============================
Comparison of Fused Gromov-Wasserstein solvers
==============================

This example illustrates the computation of FGW for attributed graphs
using 3 different solvers to estimate the distance based on Conditional
Gradient [24] or Sinkhorn projections [12, 51].

We generate two graphs following Stochastic Block Models further endowed with
node features and compute their FGW matchings.

[12] Gabriel Peyré, Marco Cuturi, and Justin Solomon (2016),
"Gromov-Wasserstein averaging of kernel and distance matrices".
International Conference on Machine Learning (ICML).

[24] Vayer Titouan, Chapel Laetitia, Flamary Rémi, Tavenard Romain
and Courty Nicolas
"Optimal Transport for structured data with application on graphs"
International Conference on Machine Learning (ICML). 2019.

[51] Xu, H., Luo, D., Zha, H., & Duke, L. C. (2019).
"Gromov-wasserstein learning for graph matching and node embedding".
In International Conference on Machine Learning (ICML), 2019.
"""

# Author: Cédric Vincent-Cuaz <cedvincentcuaz@gmail.com>
#
# License: MIT License

# sphinx_gallery_thumbnail_number = 1

import numpy as np
import matplotlib.pylab as pl
from ot.gromov import fused_gromov_wasserstein, entropic_fused_gromov_wasserstein
import networkx
from networkx.generators.community import stochastic_block_model as sbm

#############################################################################
#
# Generate two graphs following Stochastic Block models of 2 and 3 clusters.
# ---------------------------------------------
np.random.seed(0)

N2 = 20  # 2 communities
N3 = 30  # 3 communities
p2 = [[1., 0.1],
      [0.1, 0.9]]
p3 = [[1., 0.1, 0.],
      [0.1, 0.95, 0.1],
      [0., 0.1, 0.9]]
G2 = sbm(seed=0, sizes=[N2 // 2, N2 // 2], p=p2)
G3 = sbm(seed=0, sizes=[N3 // 3, N3 // 3, N3 // 3], p=p3)
part_G2 = [G2.nodes[i]['block'] for i in range(N2)]
part_G3 = [G3.nodes[i]['block'] for i in range(N3)]

C2 = networkx.to_numpy_array(G2)
C3 = networkx.to_numpy_array(G3)


# We add node features with given mean - by clusters
# and inversely proportional to clusters' intra-connectivity

F2 = np.zeros((N2, 1))
for i, c in enumerate(part_G2):
    F2[i, 0] = np.random.normal(loc=c, scale=0.01)

F3 = np.zeros((N3, 1))
for i, c in enumerate(part_G3):
    F3[i, 0] = np.random.normal(loc=2. - c, scale=0.01)

# Compute pairwise euclidean distance between node features
M = (F2 ** 2).dot(np.ones((1, N3))) + np.ones((N2, 1)).dot((F3 ** 2).T) - 2 * F2.dot(F3.T)

h2 = np.ones(C2.shape[0]) / C2.shape[0]
h3 = np.ones(C3.shape[0]) / C3.shape[0]

#############################################################################
#
# Compute their Fused Gromov-Wasserstein distances
# ---------------------------------------------

alpha = 0.5


# Conditional Gradient algorithm
fgw0, log0 = fused_gromov_wasserstein(
    M, C2, C3, h2, h3, 'square_loss', alpha=alpha, verbose=True, log=True)

# Proximal Point algorithm with Kullback-Leibler as proximal operator
fgw, log = entropic_fused_gromov_wasserstein(
    M, C2, C3, h2, h3, 'square_loss', alpha=alpha, epsilon=1., solver='PPA',
    log=True, verbose=True, warmstart=False, numItermax=10)

# Projected Gradient algorithm with entropic regularization
fgwe, loge = entropic_fused_gromov_wasserstein(
    M, C2, C3, h2, h3, 'square_loss', alpha=alpha, epsilon=0.01, solver='PGD',
    log=True, verbose=True, warmstart=False, numItermax=10)

print('Fused Gromov-Wasserstein distance estimated with Conditional Gradient solver: ' + str(log0['fgw_dist']))
print('Fused Gromov-Wasserstein distance estimated with Proximal Point solver: ' + str(log['fgw_dist']))
print('Entropic Fused Gromov-Wasserstein distance estimated with Projected Gradient solver: ' + str(loge['fgw_dist']))

# compute OT sparsity level
fgw0_sparsity = 100 * (fgw0 == 0.).astype(np.float64).sum() / (N2 * N3)
fgw_sparsity = 100 * (fgw == 0.).astype(np.float64).sum() / (N2 * N3)
fgwe_sparsity = 100 * (fgwe == 0.).astype(np.float64).sum() / (N2 * N3)

# Methods using Sinkhorn projections tend to produce feasibility errors on the
# marginal constraints

err0 = np.linalg.norm(fgw0.sum(1) - h2) + np.linalg.norm(fgw0.sum(0) - h3)
err = np.linalg.norm(fgw.sum(1) - h2) + np.linalg.norm(fgw.sum(0) - h3)
erre = np.linalg.norm(fgwe.sum(1) - h2) + np.linalg.norm(fgwe.sum(0) - h3)

#############################################################################
#
# Visualization of the Fused Gromov-Wasserstein matchings
# ---------------------------------------------
#
# We color nodes of the graph on the right - then project its node colors
# based on the optimal transport plan from the FGW matchings
# We adjust the intensity of links across domains proportionaly to the mass
# sent, adding a minimal intensity of 0.1 if mass sent is not zero.
# For each matching, all node sizes are proportionnal to their mass computed
# from marginals of the OT plan to illustrate potential feasibility errors.
# NB: colors refer to clusters - not to node features

# Add weights on the edges for visualization later on
weight_intra_G2 = 5
weight_inter_G2 = 0.5
weight_intra_G3 = 1.
weight_inter_G3 = 1.5

weightedG2 = networkx.Graph()
part_G2 = [G2.nodes[i]['block'] for i in range(N2)]

for node in G2.nodes():
    weightedG2.add_node(node)
for i, j in G2.edges():
    if part_G2[i] == part_G2[j]:
        weightedG2.add_edge(i, j, weight=weight_intra_G2)
    else:
        weightedG2.add_edge(i, j, weight=weight_inter_G2)

weightedG3 = networkx.Graph()
part_G3 = [G3.nodes[i]['block'] for i in range(N3)]

for node in G3.nodes():
    weightedG3.add_node(node)
for i, j in G3.edges():
    if part_G3[i] == part_G3[j]:
        weightedG3.add_edge(i, j, weight=weight_intra_G3)
    else:
        weightedG3.add_edge(i, j, weight=weight_inter_G3)


def draw_graph(G, C, nodes_color_part, Gweights=None,
               pos=None, edge_color='black', node_size=None,
               shiftx=0, seed=0):

    if (pos is None):
        pos = networkx.spring_layout(G, scale=1., seed=seed)

    if shiftx != 0:
        for k, v in pos.items():
            v[0] = v[0] + shiftx

    alpha_edge = 0.7
    width_edge = 1.8
    if Gweights is None:
        networkx.draw_networkx_edges(G, pos, width=width_edge, alpha=alpha_edge, edge_color=edge_color)
    else:
        # We make more visible connections between activated nodes
        n = len(Gweights)
        edgelist_activated = []
        edgelist_deactivated = []
        for i in range(n):
            for j in range(n):
                if Gweights[i] * Gweights[j] * C[i, j] > 0:
                    edgelist_activated.append((i, j))
                elif C[i, j] > 0:
                    edgelist_deactivated.append((i, j))

        networkx.draw_networkx_edges(G, pos, edgelist=edgelist_activated,
                                     width=width_edge, alpha=alpha_edge,
                                     edge_color=edge_color)
        networkx.draw_networkx_edges(G, pos, edgelist=edgelist_deactivated,
                                     width=width_edge, alpha=0.1,
                                     edge_color=edge_color)

    if Gweights is None:
        for node, node_color in enumerate(nodes_color_part):
            networkx.draw_networkx_nodes(G, pos, nodelist=[node],
                                         node_size=node_size, alpha=1,
                                         node_color=node_color)
    else:
        scaled_Gweights = Gweights / (0.5 * Gweights.max())
        nodes_size = node_size * scaled_Gweights
        for node, node_color in enumerate(nodes_color_part):
            networkx.draw_networkx_nodes(G, pos, nodelist=[node],
                                         node_size=nodes_size[node], alpha=1,
                                         node_color=node_color)
    return pos


def draw_transp_colored_GW(G1, C1, G2, C2, part_G1, p1, p2, T,
                           pos1=None, pos2=None, shiftx=4, switchx=False,
                           node_size=70, seed_G1=0, seed_G2=0):
    starting_color = 0
    # get graphs partition and their coloring
    part1 = part_G1.copy()
    unique_colors = ['C%s' % (starting_color + i) for i in np.unique(part1)]
    nodes_color_part1 = []
    for cluster in part1:
        nodes_color_part1.append(unique_colors[cluster])

    nodes_color_part2 = []
    # T: getting colors assignment from argmin of columns
    for i in range(len(G2.nodes())):
        j = np.argmax(T[:, i])
        nodes_color_part2.append(nodes_color_part1[j])
    pos1 = draw_graph(G1, C1, nodes_color_part1, Gweights=p1,
                      pos=pos1, node_size=node_size, shiftx=0, seed=seed_G1)
    pos2 = draw_graph(G2, C2, nodes_color_part2, Gweights=p2, pos=pos2,
                      node_size=node_size, shiftx=shiftx, seed=seed_G2)

    for k1, v1 in pos1.items():
        max_Tk1 = np.max(T[k1, :])
        for k2, v2 in pos2.items():
            if (T[k1, k2] > 0):
                pl.plot([pos1[k1][0], pos2[k2][0]],
                        [pos1[k1][1], pos2[k2][1]],
                        '-', lw=0.7, alpha=min(T[k1, k2] / max_Tk1 + 0.1, 1.),
                        color=nodes_color_part1[k1])
    return pos1, pos2


node_size = 40
fontsize = 13
seed_G2 = 0
seed_G3 = 4

pl.figure(2, figsize=(12, 3.5))
pl.clf()
pl.subplot(131)
pl.axis('off')
pl.axis
pl.title('(CG algo) FGW=%s \n \n OT sparsity = %s \n feasibility error = %s' % (
    np.round(log0['fgw_dist'], 3), str(np.round(fgw0_sparsity, 2)) + ' %',
    np.round(err0, 4)), fontsize=fontsize)

p0, q0 = fgw0.sum(1), fgw0.sum(0)  # check marginals

pos1, pos2 = draw_transp_colored_GW(
    weightedG2, C2, weightedG3, C3, part_G2, p1=p0, p2=q0, T=fgw0,
    shiftx=1.5, node_size=node_size, seed_G1=seed_G2, seed_G2=seed_G3)

pl.subplot(132)
pl.axis('off')

p, q = fgw.sum(1), fgw.sum(0)  # check marginals

pl.title('(PP algo) FGW=%s\n \n OT sparsity = %s \n feasibility error = %s' % (
    np.round(log['fgw_dist'], 3), str(np.round(fgw_sparsity, 2)) + ' %',
    np.round(err, 4)), fontsize=fontsize)

pos1, pos2 = draw_transp_colored_GW(
    weightedG2, C2, weightedG3, C3, part_G2, p1=p, p2=q, T=fgw,
    pos1=pos1, pos2=pos2, shiftx=0., node_size=node_size, seed_G1=0, seed_G2=0)

pl.subplot(133)
pl.axis('off')

pe, qe = fgwe.sum(1), fgwe.sum(0)  # check marginals

pl.title('Entropic FGW=%s\n \n OT sparsity = %s \n feasibility error = %s' % (
    np.round(loge['fgw_dist'], 3), str(np.round(fgwe_sparsity, 2)) + ' %',
    np.round(erre, 4)), fontsize=fontsize)

pos1, pos2 = draw_transp_colored_GW(
    weightedG2, C2, weightedG3, C3, part_G2, p1=pe, p2=qe, T=fgwe,
    pos1=pos1, pos2=pos2, shiftx=0., node_size=node_size, seed_G1=0, seed_G2=0)

pl.tight_layout()

pl.show()