summaryrefslogtreecommitdiff
path: root/examples/gromov/plot_gromov_wasserstein_dictionary_learning.py
blob: 7585944d0111d7129c5c68f7e61b958c9bd9fede (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
# -*- coding: utf-8 -*-

r"""
=================================
(Fused) Gromov-Wasserstein Linear Dictionary Learning
=================================

In this exemple, we illustrate how to learn a Gromov-Wasserstein dictionary on
a dataset of structured data such as graphs, denoted
:math:`\{ \mathbf{C_s} \}_{s \in [S]}` where every nodes have uniform weights.
Given a dictionary :math:`\mathbf{C_{dict}}` composed of D structures of a fixed
size nt, each graph :math:`(\mathbf{C_s}, \mathbf{p_s})`
is modeled as a convex combination :math:`\mathbf{w_s} \in \Sigma_D` of these
dictionary atoms as :math:`\sum_d w_{s,d} \mathbf{C_{dict}[d]}`.


First, we consider a dataset composed of graphs generated by Stochastic Block models
with variable sizes taken in :math:`\{30, ... , 50\}` and quantities of clusters
varying in :math:`\{ 1, 2, 3\}`. We learn a dictionary of 3 atoms, by minimizing
the Gromov-Wasserstein distance from all samples to its model in the dictionary
with respect to the dictionary atoms.

Second, we illustrate the extension of this dictionary learning framework to
structured data endowed with node features by using the Fused Gromov-Wasserstein
distance. Starting from the aforementioned dataset of unattributed graphs, we
add discrete labels uniformly depending on the number of clusters. Then we learn
and visualize attributed graph atoms where each sample is modeled as a joint convex
combination between atom structures and features.


[38] C. Vincent-Cuaz, T. Vayer, R. Flamary, M. Corneli, N. Courty, Online Graph
Dictionary Learning, International Conference on Machine Learning (ICML), 2021.

"""
# Author: Cédric Vincent-Cuaz <cedric.vincent-cuaz@inria.fr>
#
# License: MIT License

# sphinx_gallery_thumbnail_number = 4

import numpy as np
import matplotlib.pylab as pl
from sklearn.manifold import MDS
from ot.gromov import gromov_wasserstein_linear_unmixing, gromov_wasserstein_dictionary_learning, fused_gromov_wasserstein_linear_unmixing, fused_gromov_wasserstein_dictionary_learning
import ot
import networkx
from networkx.generators.community import stochastic_block_model as sbm

#############################################################################
#
# Generate a dataset composed of graphs following Stochastic Block models of 1, 2 and 3 clusters.
# ---------------------------------------------

np.random.seed(42)

N = 60  # number of graphs in the dataset
# For every number of clusters, we generate SBM with fixed inter/intra-clusters probability.
clusters = [1, 2, 3]
Nc = N // len(clusters)  # number of graphs by cluster
nlabels = len(clusters)
dataset = []
labels = []

p_inter = 0.1
p_intra = 0.9
for n_cluster in clusters:
    for i in range(Nc):
        n_nodes = int(np.random.uniform(low=30, high=50))

        if n_cluster > 1:
            P = p_inter * np.ones((n_cluster, n_cluster))
            np.fill_diagonal(P, p_intra)
        else:
            P = p_intra * np.eye(1)
        sizes = np.round(n_nodes * np.ones(n_cluster) / n_cluster).astype(np.int32)
        G = sbm(sizes, P, seed=i, directed=False)
        C = networkx.to_numpy_array(G)
        dataset.append(C)
        labels.append(n_cluster)


# Visualize samples

def plot_graph(x, C, binary=True, color='C0', s=None):
    for j in range(C.shape[0]):
        for i in range(j):
            if binary:
                if C[i, j] > 0:
                    pl.plot([x[i, 0], x[j, 0]], [x[i, 1], x[j, 1]], alpha=0.2, color='k')
            else:  # connection intensity proportional to C[i,j]
                pl.plot([x[i, 0], x[j, 0]], [x[i, 1], x[j, 1]], alpha=C[i, j], color='k')

    pl.scatter(x[:, 0], x[:, 1], c=color, s=s, zorder=10, edgecolors='k', cmap='tab10', vmax=9)


pl.figure(1, (12, 8))
pl.clf()
for idx_c, c in enumerate(clusters):
    C = dataset[(c - 1) * Nc]  # sample with c clusters
    # get 2d position for nodes
    x = MDS(dissimilarity='precomputed', random_state=0).fit_transform(1 - C)
    pl.subplot(2, nlabels, c)
    pl.title('(graph) sample from label ' + str(c), fontsize=14)
    plot_graph(x, C, binary=True, color='C0', s=50.)
    pl.axis("off")
    pl.subplot(2, nlabels, nlabels + c)
    pl.title('(matrix) sample from label %s \n' % c, fontsize=14)
    pl.imshow(C, interpolation='nearest')
    pl.axis("off")
pl.tight_layout()
pl.show()

#############################################################################
#
# Estimate the gromov-wasserstein dictionary from the dataset
# ---------------------------------------------


np.random.seed(0)
ps = [ot.unif(C.shape[0]) for C in dataset]

D = 3  # 3 atoms in the dictionary
nt = 6  # of 6 nodes each

q = ot.unif(nt)
reg = 0.  # regularization coefficient to promote sparsity of unmixings {w_s}

Cdict_GW, log = gromov_wasserstein_dictionary_learning(
    Cs=dataset, D=D, nt=nt, ps=ps, q=q, epochs=10, batch_size=16,
    learning_rate=0.1, reg=reg, projection='nonnegative_symmetric',
    tol_outer=10**(-5), tol_inner=10**(-5), max_iter_outer=30, max_iter_inner=300,
    use_log=True, use_adam_optimizer=True, verbose=True
)
# visualize loss evolution over epochs
pl.figure(2, (4, 3))
pl.clf()
pl.title('loss evolution by epoch', fontsize=14)
pl.plot(log['loss_epochs'])
pl.xlabel('epochs', fontsize=12)
pl.ylabel('loss', fontsize=12)
pl.tight_layout()
pl.show()

#############################################################################
#
# Visualization of the estimated dictionary atoms
# ---------------------------------------------


# Continuous connections between nodes of the atoms are colored in shades of grey (1: dark / 2: white)

pl.figure(3, (12, 8))
pl.clf()
for idx_atom, atom in enumerate(Cdict_GW):
    scaled_atom = (atom - atom.min()) / (atom.max() - atom.min())
    x = MDS(dissimilarity='precomputed', random_state=0).fit_transform(1 - scaled_atom)
    pl.subplot(2, D, idx_atom + 1)
    pl.title('(graph) atom ' + str(idx_atom + 1), fontsize=14)
    plot_graph(x, atom / atom.max(), binary=False, color='C0', s=100.)
    pl.axis("off")
    pl.subplot(2, D, D + idx_atom + 1)
    pl.title('(matrix) atom %s \n' % (idx_atom + 1), fontsize=14)
    pl.imshow(scaled_atom, interpolation='nearest')
    pl.colorbar()
    pl.axis("off")
pl.tight_layout()
pl.show()

#############################################################################
#
# Visualization of the embedding space
# ---------------------------------------------

unmixings = []
reconstruction_errors = []
for C in dataset:
    p = ot.unif(C.shape[0])
    unmixing, Cembedded, OT, reconstruction_error = gromov_wasserstein_linear_unmixing(
        C, Cdict_GW, p=p, q=q, reg=reg,
        tol_outer=10**(-5), tol_inner=10**(-5),
        max_iter_outer=30, max_iter_inner=300
    )
    unmixings.append(unmixing)
    reconstruction_errors.append(reconstruction_error)
unmixings = np.array(unmixings)
print('cumulated reconstruction error:', np.array(reconstruction_errors).sum())


# Compute the 2D representation of the unmixing living in the 2-simplex of probability
unmixings2D = np.zeros(shape=(N, 2))
for i, w in enumerate(unmixings):
    unmixings2D[i, 0] = (2. * w[1] + w[2]) / 2.
    unmixings2D[i, 1] = (np.sqrt(3.) * w[2]) / 2.
x = [0., 0.]
y = [1., 0.]
z = [0.5, np.sqrt(3) / 2.]
extremities = np.stack([x, y, z])

pl.figure(4, (4, 4))
pl.clf()
pl.title('Embedding space', fontsize=14)
for cluster in range(nlabels):
    start, end = Nc * cluster, Nc * (cluster + 1)
    if cluster == 0:
        pl.scatter(unmixings2D[start:end, 0], unmixings2D[start:end, 1], c='C' + str(cluster), marker='o', s=40., label='1 cluster')
    else:
        pl.scatter(unmixings2D[start:end, 0], unmixings2D[start:end, 1], c='C' + str(cluster), marker='o', s=40., label='%s clusters' % (cluster + 1))
pl.scatter(extremities[:, 0], extremities[:, 1], c='black', marker='x', s=80., label='atoms')
pl.plot([x[0], y[0]], [x[1], y[1]], color='black', linewidth=2.)
pl.plot([x[0], z[0]], [x[1], z[1]], color='black', linewidth=2.)
pl.plot([y[0], z[0]], [y[1], z[1]], color='black', linewidth=2.)
pl.axis('off')
pl.legend(fontsize=11)
pl.tight_layout()
pl.show()

#############################################################################
#
# Endow the dataset with node features
# ---------------------------------------------
# We follow this feature assignment on all nodes of a graph depending on its label/number of clusters
# 1 cluster --> 0 as nodes feature
# 2 clusters --> 1 as nodes feature
# 3 clusters --> 2 as nodes feature
# features are one-hot encoded following these assignments
dataset_features = []
for i in range(len(dataset)):
    n = dataset[i].shape[0]
    F = np.zeros((n, 3))
    if i < Nc:  # graph with 1 cluster
        F[:, 0] = 1.
    elif i < 2 * Nc:  # graph with 2 clusters
        F[:, 1] = 1.
    else:  # graph with 3 clusters
        F[:, 2] = 1.
    dataset_features.append(F)

pl.figure(5, (12, 8))
pl.clf()
for idx_c, c in enumerate(clusters):
    C = dataset[(c - 1) * Nc]  # sample with c clusters
    F = dataset_features[(c - 1) * Nc]
    colors = ['C' + str(np.argmax(F[i])) for i in range(F.shape[0])]
    # get 2d position for nodes
    x = MDS(dissimilarity='precomputed', random_state=0).fit_transform(1 - C)
    pl.subplot(2, nlabels, c)
    pl.title('(graph) sample from label ' + str(c), fontsize=14)
    plot_graph(x, C, binary=True, color=colors, s=50)
    pl.axis("off")
    pl.subplot(2, nlabels, nlabels + c)
    pl.title('(matrix) sample from label %s \n' % c, fontsize=14)
    pl.imshow(C, interpolation='nearest')
    pl.axis("off")
pl.tight_layout()
pl.show()

#############################################################################
#
# Estimate a Fused Gromov-Wasserstein dictionary from the dataset of attributed graphs
# ---------------------------------------------
np.random.seed(0)
ps = [ot.unif(C.shape[0]) for C in dataset]
D = 3  # 6 atoms instead of 3
nt = 6
q = ot.unif(nt)
reg = 0.001
alpha = 0.5  # trade-off parameter between structure and feature information of Fused Gromov-Wasserstein


Cdict_FGW, Ydict_FGW, log = fused_gromov_wasserstein_dictionary_learning(
    Cs=dataset, Ys=dataset_features, D=D, nt=nt, ps=ps, q=q, alpha=alpha,
    epochs=10, batch_size=16, learning_rate_C=0.1, learning_rate_Y=0.1, reg=reg,
    tol_outer=10**(-5), tol_inner=10**(-5), max_iter_outer=30, max_iter_inner=300,
    projection='nonnegative_symmetric', use_log=True, use_adam_optimizer=True, verbose=True
)
# visualize loss evolution
pl.figure(6, (4, 3))
pl.clf()
pl.title('loss evolution by epoch', fontsize=14)
pl.plot(log['loss_epochs'])
pl.xlabel('epochs', fontsize=12)
pl.ylabel('loss', fontsize=12)
pl.tight_layout()
pl.show()

#############################################################################
#
# Visualization of the estimated dictionary atoms
# ---------------------------------------------

pl.figure(7, (12, 8))
pl.clf()
max_features = Ydict_FGW.max()
min_features = Ydict_FGW.min()

for idx_atom, (Catom, Fatom) in enumerate(zip(Cdict_FGW, Ydict_FGW)):
    scaled_atom = (Catom - Catom.min()) / (Catom.max() - Catom.min())
    #scaled_F = 2 * (Fatom - min_features) / (max_features - min_features)
    colors = ['C%s' % np.argmax(Fatom[i]) for i in range(Fatom.shape[0])]
    x = MDS(dissimilarity='precomputed', random_state=0).fit_transform(1 - scaled_atom)
    pl.subplot(2, D, idx_atom + 1)
    pl.title('(attributed graph) atom ' + str(idx_atom + 1), fontsize=14)
    plot_graph(x, Catom / Catom.max(), binary=False, color=colors, s=100)
    pl.axis("off")
    pl.subplot(2, D, D + idx_atom + 1)
    pl.title('(matrix) atom %s \n' % (idx_atom + 1), fontsize=14)
    pl.imshow(scaled_atom, interpolation='nearest')
    pl.colorbar()
    pl.axis("off")
pl.tight_layout()
pl.show()

#############################################################################
#
# Visualization of the embedding space
# ---------------------------------------------

unmixings = []
reconstruction_errors = []
for i in range(len(dataset)):
    C = dataset[i]
    Y = dataset_features[i]
    p = ot.unif(C.shape[0])
    unmixing, Cembedded, Yembedded, OT, reconstruction_error = fused_gromov_wasserstein_linear_unmixing(
        C, Y, Cdict_FGW, Ydict_FGW, p=p, q=q, alpha=alpha,
        reg=reg, tol_outer=10**(-6), tol_inner=10**(-6), max_iter_outer=30, max_iter_inner=300
    )
    unmixings.append(unmixing)
    reconstruction_errors.append(reconstruction_error)
unmixings = np.array(unmixings)
print('cumulated reconstruction error:', np.array(reconstruction_errors).sum())

# Visualize unmixings in the 2-simplex of probability
unmixings2D = np.zeros(shape=(N, 2))
for i, w in enumerate(unmixings):
    unmixings2D[i, 0] = (2. * w[1] + w[2]) / 2.
    unmixings2D[i, 1] = (np.sqrt(3.) * w[2]) / 2.
x = [0., 0.]
y = [1., 0.]
z = [0.5, np.sqrt(3) / 2.]
extremities = np.stack([x, y, z])

pl.figure(8, (4, 4))
pl.clf()
pl.title('Embedding space', fontsize=14)
for cluster in range(nlabels):
    start, end = Nc * cluster, Nc * (cluster + 1)
    if cluster == 0:
        pl.scatter(unmixings2D[start:end, 0], unmixings2D[start:end, 1], c='C' + str(cluster), marker='o', s=40., label='1 cluster')
    else:
        pl.scatter(unmixings2D[start:end, 0], unmixings2D[start:end, 1], c='C' + str(cluster), marker='o', s=40., label='%s clusters' % (cluster + 1))

pl.scatter(extremities[:, 0], extremities[:, 1], c='black', marker='x', s=80., label='atoms')
pl.plot([x[0], y[0]], [x[1], y[1]], color='black', linewidth=2.)
pl.plot([x[0], z[0]], [x[1], z[1]], color='black', linewidth=2.)
pl.plot([y[0], z[0]], [y[1], z[1]], color='black', linewidth=2.)
pl.axis('off')
pl.legend(fontsize=11)
pl.tight_layout()
pl.show()