summaryrefslogtreecommitdiff
path: root/examples/others/plot_learning_weights_with_COOT.py
blob: cb115c306e01d43c0ee9b65f50d5acc81f3628a0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# -*- coding: utf-8 -*-
r"""
===============================================================
Learning sample marginal distribution with CO-Optimal Transport
===============================================================

In this example, we illustrate how to estimate the sample marginal distribution which minimizes
the CO-Optimal Transport distance [47]_ between two matrices. More precisely, given a source data
:math:`(X, \mu_x^{(s)}, \mu_x^{(f)})` and a target matrix :math:`Y` associated with a fixed
histogram on features :math:`\mu_y^{(f)}`, we want to solve the following problem

.. math::
    \min_{\mu_y^{(s)} \in \Delta} \text{COOT}\left( (X, \mu_x^{(s)}, \mu_x^{(f)}), (Y, \mu_y^{(s)}, \mu_y^{(f)}) \right)

where :math:`\Delta` is the probability simplex. This minimization is done with a
simple projected gradient descent in PyTorch. We use the automatic backend of POT that
allows us to compute the CO-Optimal Transport distance with :func:`ot.coot.co_optimal_transport2`
with differentiable losses.

.. [49] Redko, I., Vayer, T., Flamary, R., and Courty, N. (2020).
   `CO-Optimal Transport <https://proceedings.neurips.cc/paper/2020/file/cc384c68ad503482fb24e6d1e3b512ae-Paper.pdf>`_.
   Advances in Neural Information Processing Systems, 33.
"""

# Author: Remi Flamary <remi.flamary@unice.fr>
#         Quang Huy Tran <quang-huy.tran@univ-ubs.fr>
# License: MIT License

from matplotlib.patches import ConnectionPatch
import torch
import numpy as np

import matplotlib.pyplot as pl
import ot

from ot.coot import co_optimal_transport as coot
from ot.coot import co_optimal_transport2 as coot2


# %%
# Generate data
# -------------
# The source and clean target matrices are generated by
# :math:`X_{i,j} = \cos(\frac{i}{n_1} \pi) + \cos(\frac{j}{d_1} \pi)` and
# :math:`Y_{i,j} = \cos(\frac{i}{n_2} \pi) + \cos(\frac{j}{d_2} \pi)`.
# The target matrix is then contaminated by adding 5 row outliers.
# Intuitively, we expect that the estimated sample distribution should ignore these outliers,
# i.e. their weights should be zero.

np.random.seed(182)

n1, d1 = 20, 16
n2, d2 = 10, 8
n = 15

X = (
    torch.cos(torch.arange(n1) * torch.pi / n1)[:, None] +
    torch.cos(torch.arange(d1) * torch.pi / d1)[None, :]
)

# Generate clean target data mixed with outliers
Y_noisy = torch.randn((n, d2)) * 10.0
Y_noisy[:n2, :] = (
    torch.cos(torch.arange(n2) * torch.pi / n2)[:, None] +
    torch.cos(torch.arange(d2) * torch.pi / d2)[None, :]
)
Y = Y_noisy[:n2, :]

X, Y_noisy, Y = X.double(), Y_noisy.double(), Y.double()

fig, axes = pl.subplots(nrows=1, ncols=3, figsize=(12, 5))
axes[0].imshow(X, vmin=-2, vmax=2)
axes[0].set_title('$X$')

axes[1].imshow(Y, vmin=-2, vmax=2)
axes[1].set_title('Clean $Y$')

axes[2].imshow(Y_noisy, vmin=-2, vmax=2)
axes[2].set_title('Noisy $Y$')

pl.tight_layout()

# %%
# Optimize the COOT distance with respect to the sample marginal distribution
# ---------------------------------------------------------------------------

losses = []
lr = 1e-3
niter = 1000

b = torch.tensor(ot.unif(n), requires_grad=True)

for i in range(niter):

    loss = coot2(X, Y_noisy, wy_samp=b, log=False, verbose=False)
    losses.append(float(loss))

    loss.backward()

    with torch.no_grad():
        b -= lr * b.grad  # gradient step
        b[:] = ot.utils.proj_simplex(b)  # projection on the simplex

    b.grad.zero_()

# Estimated sample marginal distribution and training loss curve
pl.plot(losses[10:])
pl.title('CO-Optimal Transport distance')

print(f"Marginal distribution = {b.detach().numpy()}")

# %%
# Visualizing the row and column alignments with the estimated sample marginal distribution
# -----------------------------------------------------------------------------------------
#
# Clearly, the learned marginal distribution completely and successfully ignores the 5 outliers.

X, Y_noisy = X.numpy(), Y_noisy.numpy()
b = b.detach().numpy()

pi_sample, pi_feature = coot(X, Y_noisy, wy_samp=b, log=False, verbose=True)

fig = pl.figure(4, (9, 7))
pl.clf()

ax1 = pl.subplot(2, 2, 3)
pl.imshow(X, vmin=-2, vmax=2)
pl.xlabel('$X$')

ax2 = pl.subplot(2, 2, 2)
ax2.yaxis.tick_right()
pl.imshow(np.transpose(Y_noisy), vmin=-2, vmax=2)
pl.title("Transpose(Noisy $Y$)")
ax2.xaxis.tick_top()

for i in range(n1):
    j = np.argmax(pi_sample[i, :])
    xyA = (d1 - .5, i)
    xyB = (j, d2 - .5)
    con = ConnectionPatch(xyA=xyA, xyB=xyB, coordsA=ax1.transData,
                          coordsB=ax2.transData, color="black")
    fig.add_artist(con)

for i in range(d1):
    j = np.argmax(pi_feature[i, :])
    xyA = (i, -.5)
    xyB = (-.5, j)
    con = ConnectionPatch(
        xyA=xyA, xyB=xyB, coordsA=ax1.transData, coordsB=ax2.transData, color="blue")
    fig.add_artist(con)