summaryrefslogtreecommitdiff
path: root/examples/plot_OTDA_mapping_color_images.py
blob: f07dc6c8d1d8fb26bef8c28cd001a5a2eda7dc06 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# -*- coding: utf-8 -*-
"""
====================================================================================
OT for domain adaptation with image color adaptation [6] with mapping estimation [8]
====================================================================================

[6] Ferradans, S., Papadakis, N., Peyre, G., & Aujol, J. F. (2014). Regularized
    discrete optimal transport. SIAM Journal on Imaging Sciences, 7(3), 1853-1882.
[8] M. Perrot, N. Courty, R. Flamary, A. Habrard, "Mapping estimation for
    discrete optimal transport", Neural Information Processing Systems (NIPS), 2016.

"""

import numpy as np
import scipy.ndimage as spi
import matplotlib.pylab as pl
import ot


#%% Loading images

I1=spi.imread('../data/ocean_day.jpg').astype(np.float64)/256
I2=spi.imread('../data/ocean_sunset.jpg').astype(np.float64)/256

#%% Plot images

pl.figure(1)

pl.subplot(1,2,1)
pl.imshow(I1)
pl.title('Image 1')

pl.subplot(1,2,2)
pl.imshow(I2)
pl.title('Image 2')

pl.show()

#%% Image conversion and dataset generation

def im2mat(I):
    """Converts and image to matrix (one pixel per line)"""
    return I.reshape((I.shape[0]*I.shape[1],I.shape[2]))

def mat2im(X,shape):
    """Converts back a matrix to an image"""
    return X.reshape(shape)

X1=im2mat(I1)
X2=im2mat(I2)

# training samples
nb=1000
idx1=np.random.randint(X1.shape[0],size=(nb,))
idx2=np.random.randint(X2.shape[0],size=(nb,))

xs=X1[idx1,:]
xt=X2[idx2,:]

#%% Plot image distributions


pl.figure(2,(10,5))

pl.subplot(1,2,1)
pl.scatter(xs[:,0],xs[:,2],c=xs)
pl.axis([0,1,0,1])
pl.xlabel('Red')
pl.ylabel('Blue')
pl.title('Image 1')

pl.subplot(1,2,2)
#pl.imshow(I2)
pl.scatter(xt[:,0],xt[:,2],c=xt)
pl.axis([0,1,0,1])
pl.xlabel('Red')
pl.ylabel('Blue')
pl.title('Image 2')

pl.show()



#%% domain adaptation between images
def minmax(I):
    return np.minimum(np.maximum(I,0),1)
# LP problem
da_emd=ot.da.OTDA()     # init class
da_emd.fit(xs,xt)       # fit distributions

X1t=da_emd.predict(X1)  # out of sample
I1t=minmax(mat2im(X1t,I1.shape))

# sinkhorn regularization
lambd=1e-1
da_entrop=ot.da.OTDA_sinkhorn()
da_entrop.fit(xs,xt,reg=lambd)

X1te=da_entrop.predict(X1)
I1te=minmax(mat2im(X1te,I1.shape))

# linear mapping estimation
eta=1e-8   # quadratic regularization for regression
mu=1e0     # weight of the OT linear term
bias=True  # estimate a bias

ot_mapping=ot.da.OTDA_mapping_linear()
ot_mapping.fit(xs,xt,mu=mu,eta=eta,bias=bias,numItermax = 20,verbose=True)

X1tl=ot_mapping.predict(X1) # use the estimated mapping
I1tl=minmax(mat2im(X1tl,I1.shape))

# nonlinear mapping estimation
eta=1e-2   # quadratic regularization for regression
mu=1e0     # weight of the OT linear term
bias=False  # estimate a bias
sigma=1    # sigma bandwidth fot gaussian kernel


ot_mapping_kernel=ot.da.OTDA_mapping_kernel()
ot_mapping_kernel.fit(xs,xt,mu=mu,eta=eta,sigma=sigma,bias=bias,numItermax = 10,verbose=True)

X1tn=ot_mapping_kernel.predict(X1) # use the estimated mapping
I1tn=minmax(mat2im(X1tn,I1.shape))
#%% plot images


pl.figure(2,(10,8))

pl.subplot(2,3,1)

pl.imshow(I1)
pl.title('Im. 1')

pl.subplot(2,3,2)

pl.imshow(I2)
pl.title('Im. 2')


pl.subplot(2,3,3)
pl.imshow(I1t)
pl.title('Im. 1 Interp LP')

pl.subplot(2,3,4)
pl.imshow(I1te)
pl.title('Im. 1 Interp Entrop')


pl.subplot(2,3,5)
pl.imshow(I1tl)
pl.title('Im. 1 Linear mapping')

pl.subplot(2,3,6)
pl.imshow(I1tn)
pl.title('Im. 1 nonlinear mapping')

pl.show()