summaryrefslogtreecommitdiff
path: root/examples/plot_compute_wasserstein_circle.py
blob: 3ede96f3c3db22124e3a22e1cd7cd7b3a454a783 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# -*- coding: utf-8 -*-
"""
=========================
OT distance on the Circle
=========================

Shows how to compute the Wasserstein distance on the circle


"""

# Author: Clément Bonet <clement.bonet@univ-ubs.fr>
#
# License: MIT License

# sphinx_gallery_thumbnail_number = 2

import numpy as np
import matplotlib.pylab as pl
import ot

from scipy.special import iv

##############################################################################
# Plot data
# ---------

#%% plot the distributions


def pdf_von_Mises(theta, mu, kappa):
    pdf = np.exp(kappa * np.cos(theta - mu)) / (2.0 * np.pi * iv(0, kappa))
    return pdf


t = np.linspace(0, 2 * np.pi, 1000, endpoint=False)

mu1 = 1
kappa1 = 20

mu_targets = np.linspace(mu1, mu1 + 2 * np.pi, 10)


pdf1 = pdf_von_Mises(t, mu1, kappa1)


pl.figure(1)
for k, mu in enumerate(mu_targets):
    pdf_t = pdf_von_Mises(t, mu, kappa1)
    if k == 0:
        label = "Source distributions"
    else:
        label = None
    pl.plot(t / (2 * np.pi), pdf_t, c='b', label=label)

pl.plot(t / (2 * np.pi), pdf1, c="r", label="Target distribution")
pl.legend()

mu2 = 0
kappa2 = kappa1

x1 = np.random.vonmises(mu1, kappa1, size=(10,)) + np.pi
x2 = np.random.vonmises(mu2, kappa2, size=(10,)) + np.pi

angles = np.linspace(0, 2 * np.pi, 150)

pl.figure(2)
pl.plot(np.cos(angles), np.sin(angles), c="k")
pl.xlim(-1.25, 1.25)
pl.ylim(-1.25, 1.25)
pl.scatter(np.cos(x1), np.sin(x1), c="b")
pl.scatter(np.cos(x2), np.sin(x2), c="r")

#########################################################################################
# Compare the Euclidean Wasserstein distance with the Wasserstein distance on the  circle
# ---------------------------------------------------------------------------------------
# This examples illustrates the periodicity of the Wasserstein distance on the circle.
# We choose as target distribution a von Mises distribution with mean :math:`\mu_{\mathrm{target}}`
# and :math:`\kappa=20`. Then, we compare the distances with samples obtained from a von Mises distribution
# with parameters :math:`\mu_{\mathrm{source}}` and :math:`\kappa=20`.
# The Wasserstein distance on the circle takes into account the periodicity
# and attains its maximum in :math:`\mu_{\mathrm{target}}+1` (the antipodal point) contrary to the
# Euclidean version.

#%% Compute and plot distributions

mu_targets = np.linspace(0, 2 * np.pi, 200)
xs = np.random.vonmises(mu1 - np.pi, kappa1, size=(500,)) + np.pi

n_try = 5

xts = np.zeros((n_try, 200, 500))
for i in range(n_try):
    for k, mu in enumerate(mu_targets):
        # np.random.vonmises deals with data on [-pi, pi[
        xt = np.random.vonmises(mu - np.pi, kappa2, size=(500,)) + np.pi
        xts[i, k] = xt

# Put data on S^1=[0,1[
xts2 = xts / (2 * np.pi)
xs2 = np.concatenate([xs[None] for k in range(200)], axis=0) / (2 * np.pi)

L_w2_circle = np.zeros((n_try, 200))
L_w2 = np.zeros((n_try, 200))

for i in range(n_try):
    w2_circle = ot.wasserstein_circle(xs2.T, xts2[i].T, p=2)
    w2 = ot.wasserstein_1d(xs2.T, xts2[i].T, p=2)

    L_w2_circle[i] = w2_circle
    L_w2[i] = w2

m_w2_circle = np.mean(L_w2_circle, axis=0)
std_w2_circle = np.std(L_w2_circle, axis=0)

m_w2 = np.mean(L_w2, axis=0)
std_w2 = np.std(L_w2, axis=0)

pl.figure(1)
pl.plot(mu_targets / (2 * np.pi), m_w2_circle, label="Wasserstein circle")
pl.fill_between(mu_targets / (2 * np.pi), m_w2_circle - 2 * std_w2_circle, m_w2_circle + 2 * std_w2_circle, alpha=0.5)
pl.plot(mu_targets / (2 * np.pi), m_w2, label="Euclidean Wasserstein")
pl.fill_between(mu_targets / (2 * np.pi), m_w2 - 2 * std_w2, m_w2 + 2 * std_w2, alpha=0.5)
pl.vlines(x=[mu1 / (2 * np.pi)], ymin=0, ymax=np.max(w2), linestyle="--", color="k", label=r"$\mu_{\mathrm{target}}$")
pl.legend()
pl.xlabel(r"$\mu_{\mathrm{source}}$")
pl.show()


########################################################################
# Wasserstein distance between von Mises and uniform for different kappa
# ----------------------------------------------------------------------
# When :math:`\kappa=0`, the von Mises distribution is the uniform distribution on :math:`S^1`.

#%% Compute Wasserstein between Von Mises and uniform

kappas = np.logspace(-5, 2, 100)
n_try = 20

xts = np.zeros((n_try, 100, 500))
for i in range(n_try):
    for k, kappa in enumerate(kappas):
        # np.random.vonmises deals with data on [-pi, pi[
        xt = np.random.vonmises(0, kappa, size=(500,)) + np.pi
        xts[i, k] = xt / (2 * np.pi)

L_w2 = np.zeros((n_try, 100))
for i in range(n_try):
    L_w2[i] = ot.semidiscrete_wasserstein2_unif_circle(xts[i].T)

m_w2 = np.mean(L_w2, axis=0)
std_w2 = np.std(L_w2, axis=0)

pl.figure(1)
pl.plot(kappas, m_w2)
pl.fill_between(kappas, m_w2 - std_w2, m_w2 + std_w2, alpha=0.5)
pl.title(r"Evolution of $W_2^2(vM(0,\kappa), Unif(S^1))$")
pl.xlabel(r"$\kappa$")
pl.show()

# %%