summaryrefslogtreecommitdiff
path: root/examples/plot_screenkhorn_1D.py
blob: 7c0de82d88f376ad25f920594d0a6ed89f384d11 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# -*- coding: utf-8 -*-
"""
===============================
1D Screened optimal transport
===============================

This example illustrates the computation of Screenkhorn:
Screening Sinkhorn Algorithm for Optimal transport.
"""

# Author: Mokhtar Z. Alaya <mokhtarzahdi.alaya@gmail.com>
#
# License: MIT License

import numpy as np
import matplotlib.pylab as pl
import time
import ot.plot
from ot.datasets import make_1D_gauss as gauss
from ot.bregman import screenkhorn

##############################################################################
# Generate data
# -------------

#%% parameters

n = 100  # nb bins

# bin positions
x = np.arange(n, dtype=np.float64)

# Gaussian distributions
a = gauss(n, m=20, s=5)  # m= mean, s= std
b = gauss(n, m=60, s=10)

# loss matrix
M = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)))
M /= M.max()

##############################################################################
# Plot distributions and loss matrix
# ----------------------------------

#%% plot the distributions

pl.figure(1, figsize=(6.4, 3))
pl.plot(x, a, 'b', label='Source distribution')
pl.plot(x, b, 'r', label='Target distribution')
pl.legend()

# plot distributions and loss matrix

pl.figure(2, figsize=(5, 5))
ot.plot.plot1D_mat(a, b, M, 'Cost matrix M')

##############################################################################
# Solve Screenkhorn
# -----------------------

# Screenkhorn
lambd = 1e-03  # entropy parameter
ns_budget = 30  # budget number of points to be keeped in the source distribution
nt_budget = 30  # budget number of points to be keeped in the target distribution

tic = time.time()
G_screen = screenkhorn(a, b, M, lambd, ns_budget, nt_budget, uniform=False, restricted=True, verbose=True)
tac_screen = time.time() - tic

# Sinkhorn
tic = time.time()
G_sink = ot.sinkhorn(a, b, M, lambd, verbose=False)
tac_sink = time.time() - tic


pl.figure(4, figsize=(5, 5))
ot.plot.plot1D_mat(a, b, G_screen, 'OT matrix Screenkhorn')

pl.show()

##############################################################################
# Time complexity
# -----------------------
print("Sinkhorn time complexity: %s\n" % tac_sink)
print("Screenkhorn time complexity: %s\n" % tac_screen)
print("Time_Sinkhorn / Time_Screenkhorn: %s\n" % (tac_sink / tac_screen))