summaryrefslogtreecommitdiff
path: root/examples/plot_stochastic.py
blob: 9071ddb4d27304ced3e960c83a2286e825192933 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
"""
==========================
Stochastic examples
==========================

This example is designed to show how to use the stochatic optimization
algorithms for descrete and semicontinous measures from the POT library.

"""

# Author: Kilian Fatras <kilian.fatras@gmail.com>
#
# License: MIT License

import matplotlib.pylab as pl
import numpy as np
import ot


#############################################################################
# COMPUTE TRANSPORTATION MATRIX
#############################################################################

#############################################################################
# DISCRETE CASE
# Sample two discrete measures for the discrete case
# ---------------------------------------------
#
# Define 2 discrete measures a and b, the points where are defined the source
# and the target measures and finally the cost matrix c.

n_source = 7
n_target = 4
reg = 1
numItermax = 10000
lr = 0.1

a = ot.utils.unif(n_source)
b = ot.utils.unif(n_target)

rng = np.random.RandomState(0)
X_source = rng.randn(n_source, 2)
Y_target = rng.randn(n_target, 2)
M = ot.dist(X_source, Y_target)

#############################################################################
#
# Call the "SAG" method to find the transportation matrix in the discrete case
# ---------------------------------------------
#
# Define the method "SAG", call ot.transportation_matrix_entropic and plot the
# results.

method = "SAG"
sag_pi = ot.stochastic.transportation_matrix_entropic(a, b, M, reg, method,
                                                      numItermax, lr)
print(sag_pi)

#############################################################################
# SEMICONTINOUS CASE
# Sample one general measure a, one discrete measures b for the semicontinous
# case
# ---------------------------------------------
#
# Define one general measure a, one discrete measures b, the points where
# are defined the source and the target measures and finally the cost matrix c.

n_source = 7
n_target = 4
reg = 1
numItermax = 500000
lr = 1

a = ot.utils.unif(n_source)
b = ot.utils.unif(n_target)

rng = np.random.RandomState(0)
X_source = rng.randn(n_source, 2)
Y_target = rng.randn(n_target, 2)
M = ot.dist(X_source, Y_target)

#############################################################################
#
# Call the "ASGD" method to find the transportation matrix in the semicontinous
# case
# ---------------------------------------------
#
# Define the method "ASGD", call ot.transportation_matrix_entropic and plot the
# results.

method = "ASGD"
asgd_pi = ot.stochastic.transportation_matrix_entropic(a, b, M, reg, method,
                                                       numItermax, lr)
print(asgd_pi)

#############################################################################
#
# Compare the results with the Sinkhorn algorithm
# ---------------------------------------------
#
# Call the Sinkhorn algorithm from POT

sinkhorn_pi = ot.sinkhorn(a, b, M, 1)
print(sinkhorn_pi)


##############################################################################
# PLOT TRANSPORTATION MATRIX
##############################################################################

##############################################################################
# Plot SAG results
# ----------------

pl.figure(4, figsize=(5, 5))
ot.plot.plot1D_mat(a, b, sag_pi, 'OT matrix SAG')
pl.show()


##############################################################################
# Plot ASGD results
# -----------------

pl.figure(4, figsize=(5, 5))
ot.plot.plot1D_mat(a, b, asgd_pi, 'OT matrix ASGD')
pl.show()


##############################################################################
# Plot Sinkhorn results
# ---------------------

pl.figure(4, figsize=(5, 5))
ot.plot.plot1D_mat(a, b, sinkhorn_pi, 'OT matrix Sinkhorn')
pl.show()