summaryrefslogtreecommitdiff
path: root/examples/plot_stochastic.py
blob: 3a1ef31671495e6e19410fce9b71dc527ee02f22 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
"""
===================
Stochastic examples
===================

This example is designed to show how to use the stochatic optimization
algorithms for discrete and semi-continuous measures from the POT library.

[18] Genevay, A., Cuturi, M., Peyré, G. & Bach, F.
Stochastic Optimization for Large-scale Optimal Transport.
Advances in Neural Information Processing Systems (2016).

[19] Seguy, V., Bhushan Damodaran, B., Flamary, R., Courty, N., Rolet, A. &
Blondel, M. Large-scale Optimal Transport and Mapping Estimation.
International Conference on Learning Representation (2018)

"""

# Author: Kilian Fatras <kilian.fatras@gmail.com>
#
# License: MIT License

import matplotlib.pylab as pl
import numpy as np
import ot
import ot.plot


#############################################################################
# Compute the Transportation Matrix for the Semi-Dual Problem
# -----------------------------------------------------------
#
# Discrete case
# `````````````
#
# Sample two discrete measures for the discrete case and compute their cost
# matrix c.

n_source = 7
n_target = 4
reg = 1
numItermax = 1000

a = ot.utils.unif(n_source)
b = ot.utils.unif(n_target)

rng = np.random.RandomState(0)
X_source = rng.randn(n_source, 2)
Y_target = rng.randn(n_target, 2)
M = ot.dist(X_source, Y_target)

#############################################################################
# Call the "SAG" method to find the transportation matrix in the discrete case

method = "SAG"
sag_pi = ot.stochastic.solve_semi_dual_entropic(a, b, M, reg, method,
                                                numItermax)
print(sag_pi)

#############################################################################
# Semi-Continuous Case
# ````````````````````
#
# Sample one general measure a, one discrete measures b for the semicontinous
# case, the points where source and target measures are defined and compute the
# cost matrix.

n_source = 7
n_target = 4
reg = 1
numItermax = 1000
log = True

a = ot.utils.unif(n_source)
b = ot.utils.unif(n_target)

rng = np.random.RandomState(0)
X_source = rng.randn(n_source, 2)
Y_target = rng.randn(n_target, 2)
M = ot.dist(X_source, Y_target)

#############################################################################
# Call the "ASGD" method to find the transportation matrix in the semicontinous
# case.

method = "ASGD"
asgd_pi, log_asgd = ot.stochastic.solve_semi_dual_entropic(a, b, M, reg, method,
                                                           numItermax, log=log)
print(log_asgd['alpha'], log_asgd['beta'])
print(asgd_pi)

#############################################################################
# Compare the results with the Sinkhorn algorithm

sinkhorn_pi = ot.sinkhorn(a, b, M, reg)
print(sinkhorn_pi)


##############################################################################
# Plot Transportation Matrices
# ````````````````````````````
#
# For SAG

pl.figure(4, figsize=(5, 5))
ot.plot.plot1D_mat(a, b, sag_pi, 'semi-dual : OT matrix SAG')
pl.show()


##############################################################################
# For ASGD

pl.figure(4, figsize=(5, 5))
ot.plot.plot1D_mat(a, b, asgd_pi, 'semi-dual : OT matrix ASGD')
pl.show()


##############################################################################
# For Sinkhorn

pl.figure(4, figsize=(5, 5))
ot.plot.plot1D_mat(a, b, sinkhorn_pi, 'OT matrix Sinkhorn')
pl.show()


#############################################################################
# Compute the Transportation Matrix for the Dual Problem
# ------------------------------------------------------
#
# Semi-continuous case
# ````````````````````
#
# Sample one general measure a, one discrete measures b for the semi-continuous
# case and compute the cost matrix c.

n_source = 7
n_target = 4
reg = 1
numItermax = 100000
lr = 0.1
batch_size = 3
log = True

a = ot.utils.unif(n_source)
b = ot.utils.unif(n_target)

rng = np.random.RandomState(0)
X_source = rng.randn(n_source, 2)
Y_target = rng.randn(n_target, 2)
M = ot.dist(X_source, Y_target)

#############################################################################
#
# Call the "SGD" dual method to find the transportation matrix in the
# semi-continuous case

sgd_dual_pi, log_sgd = ot.stochastic.solve_dual_entropic(a, b, M, reg,
                                                         batch_size, numItermax,
                                                         lr, log=log)
print(log_sgd['alpha'], log_sgd['beta'])
print(sgd_dual_pi)

#############################################################################
#
# Compare the results with the Sinkhorn algorithm
# ```````````````````````````````````````````````
#
# Call the Sinkhorn algorithm from POT

sinkhorn_pi = ot.sinkhorn(a, b, M, reg)
print(sinkhorn_pi)

##############################################################################
# Plot Transportation Matrices
# ````````````````````````````
#
# For SGD

pl.figure(4, figsize=(5, 5))
ot.plot.plot1D_mat(a, b, sgd_dual_pi, 'dual : OT matrix SGD')
pl.show()


##############################################################################
# For Sinkhorn

pl.figure(4, figsize=(5, 5))
ot.plot.plot1D_mat(a, b, sinkhorn_pi, 'OT matrix Sinkhorn')
pl.show()