summaryrefslogtreecommitdiff
path: root/examples/unbalanced-partial/plot_partial_wass_and_gromov.py
blob: 0c5cbf9fa65b62f6702fdcf2d404b0f931c01576 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# -*- coding: utf-8 -*-
"""
==================================================
Partial Wasserstein and Gromov-Wasserstein example
==================================================

This example is designed to show how to use the Partial (Gromov-)Wassertsein
distance computation in POT.
"""

# Author: Laetitia Chapel <laetitia.chapel@irisa.fr>
# License: MIT License

# sphinx_gallery_thumbnail_number = 2

# necessary for 3d plot even if not used
from mpl_toolkits.mplot3d import Axes3D  # noqa
import scipy as sp
import numpy as np
import matplotlib.pylab as pl
import ot


#############################################################################
#
# Sample two 2D Gaussian distributions and plot them
# --------------------------------------------------
#
# For demonstration purpose, we sample two Gaussian distributions in 2-d
# spaces and add some random noise.


n_samples = 20  # nb samples (gaussian)
n_noise = 20  # nb of samples (noise)

mu = np.array([0, 0])
cov = np.array([[1, 0], [0, 2]])

xs = ot.datasets.make_2D_samples_gauss(n_samples, mu, cov)
xs = np.append(xs, (np.random.rand(n_noise, 2) + 1) * 4).reshape((-1, 2))
xt = ot.datasets.make_2D_samples_gauss(n_samples, mu, cov)
xt = np.append(xt, (np.random.rand(n_noise, 2) + 1) * -3).reshape((-1, 2))

M = sp.spatial.distance.cdist(xs, xt)

fig = pl.figure()
ax1 = fig.add_subplot(131)
ax1.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')
ax2 = fig.add_subplot(132)
ax2.scatter(xt[:, 0], xt[:, 1], color='r')
ax3 = fig.add_subplot(133)
ax3.imshow(M)
pl.show()

#############################################################################
#
# Compute partial Wasserstein plans and distance
# ----------------------------------------------

p = ot.unif(n_samples + n_noise)
q = ot.unif(n_samples + n_noise)

w0, log0 = ot.partial.partial_wasserstein(p, q, M, m=0.5, log=True)
w, log = ot.partial.entropic_partial_wasserstein(p, q, M, reg=0.1, m=0.5,
                                                 log=True)

print('Partial Wasserstein distance (m = 0.5): ' + str(log0['partial_w_dist']))
print('Entropic partial Wasserstein distance (m = 0.5): ' +
      str(log['partial_w_dist']))

pl.figure(1, (10, 5))
pl.subplot(1, 2, 1)
pl.imshow(w0, cmap='jet')
pl.title('Partial Wasserstein')
pl.subplot(1, 2, 2)
pl.imshow(w, cmap='jet')
pl.title('Entropic partial Wasserstein')
pl.show()


#############################################################################
#
# Sample one 2D and 3D Gaussian distributions and plot them
# ---------------------------------------------------------
#
# The Gromov-Wasserstein distance allows to compute distances with samples that
# do not belong to the same metric space. For demonstration purpose, we sample
# two Gaussian distributions in 2- and 3-dimensional spaces.

n_samples = 20  # nb samples
n_noise = 10  # nb of samples (noise)

p = ot.unif(n_samples + n_noise)
q = ot.unif(n_samples + n_noise)

mu_s = np.array([0, 0])
cov_s = np.array([[1, 0], [0, 1]])

mu_t = np.array([0, 0, 0])
cov_t = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])


xs = ot.datasets.make_2D_samples_gauss(n_samples, mu_s, cov_s)
xs = np.concatenate((xs, ((np.random.rand(n_noise, 2) + 1) * 4)), axis=0)
P = sp.linalg.sqrtm(cov_t)
xt = np.random.randn(n_samples, 3).dot(P) + mu_t
xt = np.concatenate((xt, ((np.random.rand(n_noise, 3) + 1) * 10)), axis=0)

fig = pl.figure()
ax1 = fig.add_subplot(121)
ax1.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')
ax2 = fig.add_subplot(122, projection='3d')
ax2.scatter(xt[:, 0], xt[:, 1], xt[:, 2], color='r')
pl.show()


#############################################################################
#
# Compute partial Gromov-Wasserstein plans and distance
# -----------------------------------------------------

C1 = sp.spatial.distance.cdist(xs, xs)
C2 = sp.spatial.distance.cdist(xt, xt)

# transport 100% of the mass
print('-----m = 1')
m = 1
res0, log0 = ot.partial.partial_gromov_wasserstein(C1, C2, p, q, m=m, log=True)
res, log = ot.partial.entropic_partial_gromov_wasserstein(C1, C2, p, q, 10,
                                                          m=m, log=True)

print('Wasserstein distance (m = 1): ' + str(log0['partial_gw_dist']))
print('Entropic Wasserstein distance (m = 1): ' + str(log['partial_gw_dist']))

pl.figure(1, (10, 5))
pl.title("mass to be transported m = 1")
pl.subplot(1, 2, 1)
pl.imshow(res0, cmap='jet')
pl.title('Wasserstein')
pl.subplot(1, 2, 2)
pl.imshow(res, cmap='jet')
pl.title('Entropic Wasserstein')
pl.show()

# transport 2/3 of the mass
print('-----m = 2/3')
m = 2 / 3
res0, log0 = ot.partial.partial_gromov_wasserstein(C1, C2, p, q, m=m, log=True)
res, log = ot.partial.entropic_partial_gromov_wasserstein(C1, C2, p, q, 10,
                                                          m=m, log=True)

print('Partial Wasserstein distance (m = 2/3): ' +
      str(log0['partial_gw_dist']))
print('Entropic partial Wasserstein distance (m = 2/3): ' +
      str(log['partial_gw_dist']))

pl.figure(1, (10, 5))
pl.title("mass to be transported m = 2/3")
pl.subplot(1, 2, 1)
pl.imshow(res0, cmap='jet')
pl.title('Partial Wasserstein')
pl.subplot(1, 2, 2)
pl.imshow(res, cmap='jet')
pl.title('Entropic partial Wasserstein')
pl.show()