summaryrefslogtreecommitdiff
path: root/examples/unbalanced-partial/plot_regpath.py
blob: 4a51c2df2cafbbc2469129e8fc7089daeea71c68 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# -*- coding: utf-8 -*-
"""
================================================================
Regularization path of l2-penalized unbalanced optimal transport
================================================================
This example illustrate the regularization path for 2D unbalanced
optimal transport. We present here both the fully relaxed case
and the semi-relaxed case.

[Chapel et al., 2021] Chapel, L., Flamary, R., Wu, H., Févotte, C.,
and Gasso, G. (2021). Unbalanced optimal transport through non-negative
penalized linear regression.
"""

# Author: Haoran Wu <haoran.wu@univ-ubs.fr>
# License: MIT License


import numpy as np
import matplotlib.pylab as pl
import ot

##############################################################################
# Generate data
# -------------

#%% parameters and data generation

n = 50  # nb samples

mu_s = np.array([-1, -1])
cov_s = np.array([[1, 0], [0, 1]])

mu_t = np.array([4, 4])
cov_t = np.array([[1, -.8], [-.8, 1]])

np.random.seed(0)
xs = ot.datasets.make_2D_samples_gauss(n, mu_s, cov_s)
xt = ot.datasets.make_2D_samples_gauss(n, mu_t, cov_t)

a, b = np.ones((n,)) / n, np.ones((n,)) / n  # uniform distribution on samples

# loss matrix
M = ot.dist(xs, xt)
M /= M.max()

##############################################################################
# Plot data
# ---------

#%% plot 2 distribution samples

pl.figure(1)
pl.scatter(xs[:, 0], xs[:, 1], c='C0', label='Source')
pl.scatter(xt[:, 0], xt[:, 1], c='C1', label='Target')
pl.legend(loc=2)
pl.title('Source and target distributions')
pl.show()

##############################################################################
# Compute semi-relaxed and fully relaxed regularization paths
# -----------

#%%
final_gamma = 1e-8
t, t_list, g_list = ot.regpath.regularization_path(a, b, M, reg=final_gamma,
                                                   semi_relaxed=False)
t2, t_list2, g_list2 = ot.regpath.regularization_path(a, b, M, reg=final_gamma,
                                                      semi_relaxed=True)


##############################################################################
# Plot the regularization path
# ----------------

#%% fully relaxed l2-penalized UOT

pl.figure(2)
selected_gamma = [2e-1, 1e-1, 5e-2, 1e-3]
for p in range(4):
    tp = ot.regpath.compute_transport_plan(selected_gamma[p], g_list,
                                           t_list)
    P = tp.reshape((n, n))
    pl.subplot(2, 2, p + 1)
    if P.sum() > 0:
        P = P / P.max()
    for i in range(n):
        for j in range(n):
            if P[i, j] > 0:
                pl.plot([xs[i, 0], xt[j, 0]], [xs[i, 1], xt[j, 1]], color='C2',
                        alpha=P[i, j] * 0.3)
    pl.scatter(xs[:, 0], xs[:, 1], c='C0', alpha=0.2)
    pl.scatter(xt[:, 0], xt[:, 1], c='C1', alpha=0.2)
    pl.scatter(xs[:, 0], xs[:, 1], c='C0', s=P.sum(1).ravel() * (1 + p) * 2,
               label='Re-weighted source', alpha=1)
    pl.scatter(xt[:, 0], xt[:, 1], c='C1', s=P.sum(0).ravel() * (1 + p) * 2,
               label='Re-weighted target', alpha=1)
    pl.plot([], [], color='C2', alpha=0.8, label='OT plan')
    pl.title(r'$\ell_2$ UOT $\gamma$={}'.format(selected_gamma[p]),
             fontsize=11)
    if p < 2:
        pl.xticks(())
pl.show()


##############################################################################
# Plot the semi-relaxed regularization path
# -------------------

#%% semi-relaxed l2-penalized UOT

pl.figure(3)
selected_gamma = [10, 1, 1e-1, 1e-2]
for p in range(4):
    tp = ot.regpath.compute_transport_plan(selected_gamma[p], g_list2,
                                           t_list2)
    P = tp.reshape((n, n))
    pl.subplot(2, 2, p + 1)
    if P.sum() > 0:
        P = P / P.max()
    for i in range(n):
        for j in range(n):
            if P[i, j] > 0:
                pl.plot([xs[i, 0], xt[j, 0]], [xs[i, 1], xt[j, 1]], color='C2',
                        alpha=P[i, j] * 0.3)
    pl.scatter(xs[:, 0], xs[:, 1], c='C0', alpha=0.2)
    pl.scatter(xt[:, 0], xt[:, 1], c='C1', alpha=1, label='Target marginal')
    pl.scatter(xs[:, 0], xs[:, 1], c='C0', s=P.sum(1).ravel() * 2 * (1 + p),
               label='Source marginal', alpha=1)
    pl.plot([], [], color='C2', alpha=0.8, label='OT plan')
    pl.title(r'Semi-relaxed $l_2$ UOT $\gamma$={}'.format(selected_gamma[p]),
             fontsize=11)
    if p < 2:
        pl.xticks(())
pl.show()