summaryrefslogtreecommitdiff
path: root/ot/backend.py
blob: a044f849ed3dedd56d71e418d4c2a9170c7d4233 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
# -*- coding: utf-8 -*-
"""
Multi-lib backend for POT

The goal is to write backend-agnostic code. Whether you're using Numpy, PyTorch,
or Jax, POT code should work nonetheless.
To achieve that, POT provides backend classes which implements functions in their respective backend
imitating Numpy API. As a convention, we use nx instead of np to refer to the backend.

Examples
--------

>>> from ot.utils import list_to_array
>>> from ot.backend import get_backend
>>> def f(a, b):  # the function does not know which backend to use
...     a, b = list_to_array(a, b)  # if a list in given, make it an array
...     nx = get_backend(a, b)  # infer the backend from the arguments
...     c = nx.dot(a, b)  # now use the backend to do any calculation
...     return c
"""

# Author: Remi Flamary <remi.flamary@polytechnique.edu>
#         Nicolas Courty <ncourty@irisa.fr>
#
# License: MIT License

import numpy as np
import scipy.special as scipy
from scipy.sparse import issparse, coo_matrix, csr_matrix

try:
    import torch
    torch_type = torch.Tensor
except ImportError:
    torch = False
    torch_type = float

try:
    import jax
    import jax.numpy as jnp
    import jax.scipy.special as jscipy
    jax_type = jax.numpy.ndarray
except ImportError:
    jax = False
    jax_type = float

str_type_error = "All array should be from the same type/backend. Current types are : {}"


def get_backend_list():
    """Returns the list of available backends"""
    lst = [NumpyBackend(), ]

    if torch:
        lst.append(TorchBackend())

    if jax:
        lst.append(JaxBackend())

    return lst


def get_backend(*args):
    """Returns the proper backend for a list of input arrays

        Also raises TypeError if all arrays are not from the same backend
    """
    # check that some arrays given
    if not len(args) > 0:
        raise ValueError(" The function takes at least one parameter")
    # check all same type
    if not len(set(type(a) for a in args)) == 1:
        raise ValueError(str_type_error.format([type(a) for a in args]))

    if isinstance(args[0], np.ndarray):
        return NumpyBackend()
    elif isinstance(args[0], torch_type):
        return TorchBackend()
    elif isinstance(args[0], jax_type):
        return JaxBackend()
    else:
        raise ValueError("Unknown type of non implemented backend.")


def to_numpy(*args):
    """Returns numpy arrays from any compatible backend"""

    if len(args) == 1:
        return get_backend(args[0]).to_numpy(args[0])
    else:
        return [get_backend(a).to_numpy(a) for a in args]


class Backend():
    """
    Backend abstract class.
    Implementations: :py:class:`JaxBackend`, :py:class:`NumpyBackend`, :py:class:`TorchBackend`

    - The `__name__` class attribute refers to the name of the backend.
    - The `__type__` class attribute refers to the data structure used by the backend.
    """

    __name__ = None
    __type__ = None
    __type_list__ = None

    rng_ = None

    def __str__(self):
        return self.__name__

    # convert to numpy
    def to_numpy(self, a):
        """Returns the numpy version of a tensor"""
        raise NotImplementedError()

    # convert from numpy
    def from_numpy(self, a, type_as=None):
        """Creates a tensor cloning a numpy array, with the given precision (defaulting to input's precision) and the given device (in case of GPUs)"""
        raise NotImplementedError()

    def set_gradients(self, val, inputs, grads):
        """Define the gradients for the value val wrt the inputs """
        raise NotImplementedError()

    def zeros(self, shape, type_as=None):
        r"""
        Creates a tensor full of zeros.

        This function follows the api from :any:`numpy.zeros`

        See: https://numpy.org/doc/stable/reference/generated/numpy.zeros.html
        """
        raise NotImplementedError()

    def ones(self, shape, type_as=None):
        r"""
        Creates a tensor full of ones.

        This function follows the api from :any:`numpy.ones`

        See: https://numpy.org/doc/stable/reference/generated/numpy.ones.html
        """
        raise NotImplementedError()

    def arange(self, stop, start=0, step=1, type_as=None):
        r"""
        Returns evenly spaced values within a given interval.

        This function follows the api from :any:`numpy.arange`

        See: https://numpy.org/doc/stable/reference/generated/numpy.arange.html
        """
        raise NotImplementedError()

    def full(self, shape, fill_value, type_as=None):
        r"""
        Creates a tensor with given shape, filled with given value.

        This function follows the api from :any:`numpy.full`

        See: https://numpy.org/doc/stable/reference/generated/numpy.full.html
        """
        raise NotImplementedError()

    def eye(self, N, M=None, type_as=None):
        r"""
        Creates the identity matrix of given size.

        This function follows the api from :any:`numpy.eye`

        See: https://numpy.org/doc/stable/reference/generated/numpy.eye.html
        """
        raise NotImplementedError()

    def sum(self, a, axis=None, keepdims=False):
        r"""
        Sums tensor elements over given dimensions.

        This function follows the api from :any:`numpy.sum`

        See: https://numpy.org/doc/stable/reference/generated/numpy.sum.html
        """
        raise NotImplementedError()

    def cumsum(self, a, axis=None):
        r"""
        Returns the cumulative sum of tensor elements over given dimensions.

        This function follows the api from :any:`numpy.cumsum`

        See: https://numpy.org/doc/stable/reference/generated/numpy.cumsum.html
        """
        raise NotImplementedError()

    def max(self, a, axis=None, keepdims=False):
        r"""
        Returns the maximum of an array or maximum along given dimensions.

        This function follows the api from :any:`numpy.amax`

        See: https://numpy.org/doc/stable/reference/generated/numpy.amax.html
        """
        raise NotImplementedError()

    def min(self, a, axis=None, keepdims=False):
        r"""
        Returns the maximum of an array or maximum along given dimensions.

        This function follows the api from :any:`numpy.amin`

        See: https://numpy.org/doc/stable/reference/generated/numpy.amin.html
        """
        raise NotImplementedError()

    def maximum(self, a, b):
        r"""
        Returns element-wise maximum of array elements.

        This function follows the api from :any:`numpy.maximum`

        See: https://numpy.org/doc/stable/reference/generated/numpy.maximum.html
        """
        raise NotImplementedError()

    def minimum(self, a, b):
        r"""
        Returns element-wise minimum of array elements.

        This function follows the api from :any:`numpy.minimum`

        See: https://numpy.org/doc/stable/reference/generated/numpy.minimum.html
        """
        raise NotImplementedError()

    def dot(self, a, b):
        r"""
        Returns the dot product of two tensors.

        This function follows the api from :any:`numpy.dot`

        See: https://numpy.org/doc/stable/reference/generated/numpy.dot.html
        """
        raise NotImplementedError()

    def abs(self, a):
        r"""
        Computes the absolute value element-wise.

        This function follows the api from :any:`numpy.absolute`

        See: https://numpy.org/doc/stable/reference/generated/numpy.absolute.html
        """
        raise NotImplementedError()

    def exp(self, a):
        r"""
        Computes the exponential value element-wise.

        This function follows the api from :any:`numpy.exp`

        See: https://numpy.org/doc/stable/reference/generated/numpy.exp.html
        """
        raise NotImplementedError()

    def log(self, a):
        r"""
        Computes the natural logarithm, element-wise.

        This function follows the api from :any:`numpy.log`

        See: https://numpy.org/doc/stable/reference/generated/numpy.log.html
        """
        raise NotImplementedError()

    def sqrt(self, a):
        r"""
        Returns the non-ngeative square root of a tensor, element-wise.

        This function follows the api from :any:`numpy.sqrt`

        See: https://numpy.org/doc/stable/reference/generated/numpy.sqrt.html
        """
        raise NotImplementedError()

    def power(self, a, exponents):
        r"""
        First tensor elements raised to powers from second tensor, element-wise.

        This function follows the api from :any:`numpy.power`

        See: https://numpy.org/doc/stable/reference/generated/numpy.power.html
        """
        raise NotImplementedError()

    def norm(self, a):
        r"""
        Computes the matrix frobenius norm.

        This function follows the api from :any:`numpy.linalg.norm`

        See: https://numpy.org/doc/stable/reference/generated/numpy.linalg.norm.html
        """
        raise NotImplementedError()

    def any(self, a):
        r"""
        Tests whether any tensor element along given dimensions evaluates to True.

        This function follows the api from :any:`numpy.any`

        See: https://numpy.org/doc/stable/reference/generated/numpy.any.html
        """
        raise NotImplementedError()

    def isnan(self, a):
        r"""
        Tests element-wise for NaN and returns result as a boolean tensor.

        This function follows the api from :any:`numpy.isnan`

        See: https://numpy.org/doc/stable/reference/generated/numpy.isnan.html
        """
        raise NotImplementedError()

    def isinf(self, a):
        r"""
        Tests element-wise for positive or negative infinity and returns result as a boolean tensor.

        This function follows the api from :any:`numpy.isinf`

        See: https://numpy.org/doc/stable/reference/generated/numpy.isinf.html
        """
        raise NotImplementedError()

    def einsum(self, subscripts, *operands):
        r"""
        Evaluates the Einstein summation convention on the operands.

        This function follows the api from :any:`numpy.einsum`

        See: https://numpy.org/doc/stable/reference/generated/numpy.einsum.html
        """
        raise NotImplementedError()

    def sort(self, a, axis=-1):
        r"""
        Returns a sorted copy of a tensor.

        This function follows the api from :any:`numpy.sort`

        See: https://numpy.org/doc/stable/reference/generated/numpy.sort.html
        """
        raise NotImplementedError()

    def argsort(self, a, axis=None):
        r"""
        Returns the indices that would sort a tensor.

        This function follows the api from :any:`numpy.argsort`

        See: https://numpy.org/doc/stable/reference/generated/numpy.argsort.html
        """
        raise NotImplementedError()

    def searchsorted(self, a, v, side='left'):
        r"""
        Finds indices where elements should be inserted to maintain order in given tensor.

        This function follows the api from :any:`numpy.searchsorted`

        See: https://numpy.org/doc/stable/reference/generated/numpy.searchsorted.html
        """
        raise NotImplementedError()

    def flip(self, a, axis=None):
        r"""
        Reverses the order of elements in a tensor along given dimensions.

        This function follows the api from :any:`numpy.flip`

        See: https://numpy.org/doc/stable/reference/generated/numpy.flip.html
        """
        raise NotImplementedError()

    def clip(self, a, a_min, a_max):
        """
        Limits the values in a tensor.

        This function follows the api from :any:`numpy.clip`

        See: https://numpy.org/doc/stable/reference/generated/numpy.clip.html
        """
        raise NotImplementedError()

    def repeat(self, a, repeats, axis=None):
        r"""
        Repeats elements of a tensor.

        This function follows the api from :any:`numpy.repeat`

        See: https://numpy.org/doc/stable/reference/generated/numpy.repeat.html
        """
        raise NotImplementedError()

    def take_along_axis(self, arr, indices, axis):
        r"""
        Gathers elements of a tensor along given dimensions.

        This function follows the api from :any:`numpy.take_along_axis`

        See: https://numpy.org/doc/stable/reference/generated/numpy.take_along_axis.html
        """
        raise NotImplementedError()

    def concatenate(self, arrays, axis=0):
        r"""
        Joins a sequence of tensors along an existing dimension.

        This function follows the api from :any:`numpy.concatenate`

        See: https://numpy.org/doc/stable/reference/generated/numpy.concatenate.html
        """
        raise NotImplementedError()

    def zero_pad(self, a, pad_width):
        r"""
        Pads a tensor.

        This function follows the api from :any:`numpy.pad`

        See: https://numpy.org/doc/stable/reference/generated/numpy.pad.html
        """
        raise NotImplementedError()

    def argmax(self, a, axis=None):
        r"""
        Returns the indices of the maximum values of a tensor along given dimensions.

        This function follows the api from :any:`numpy.argmax`

        See: https://numpy.org/doc/stable/reference/generated/numpy.argmax.html
        """
        raise NotImplementedError()

    def mean(self, a, axis=None):
        r"""
        Computes the arithmetic mean of a tensor along given dimensions.

        This function follows the api from :any:`numpy.mean`

        See: https://numpy.org/doc/stable/reference/generated/numpy.mean.html
        """
        raise NotImplementedError()

    def std(self, a, axis=None):
        r"""
        Computes the standard deviation of a tensor along given dimensions.

        This function follows the api from :any:`numpy.std`

        See: https://numpy.org/doc/stable/reference/generated/numpy.std.html
        """
        raise NotImplementedError()

    def linspace(self, start, stop, num):
        r"""
        Returns a specified number of evenly spaced values over a given interval.

        This function follows the api from :any:`numpy.linspace`

        See: https://numpy.org/doc/stable/reference/generated/numpy.linspace.html
        """
        raise NotImplementedError()

    def meshgrid(self, a, b):
        r"""
        Returns coordinate matrices from coordinate vectors (Numpy convention).

        This function follows the api from :any:`numpy.meshgrid`

        See: https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html
        """
        raise NotImplementedError()

    def diag(self, a, k=0):
        r"""
        Extracts or constructs a diagonal tensor.

        This function follows the api from :any:`numpy.diag`

        See: https://numpy.org/doc/stable/reference/generated/numpy.diag.html
        """
        raise NotImplementedError()

    def unique(self, a):
        r"""
        Finds unique elements of given tensor.

        This function follows the api from :any:`numpy.unique`

        See: https://numpy.org/doc/stable/reference/generated/numpy.unique.html
        """
        raise NotImplementedError()

    def logsumexp(self, a, axis=None):
        r"""
        Computes the log of the sum of exponentials of input elements.

        This function follows the api from :any:`scipy.special.logsumexp`

        See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.logsumexp.html
        """
        raise NotImplementedError()

    def stack(self, arrays, axis=0):
        r"""
        Joins a sequence of tensors along a new dimension.

        This function follows the api from :any:`numpy.stack`

        See: https://numpy.org/doc/stable/reference/generated/numpy.stack.html
        """
        raise NotImplementedError()

    def outer(self, a, b):
        r"""
        Computes the outer product between two vectors.

        This function follows the api from :any:`numpy.outer`

        See: https://numpy.org/doc/stable/reference/generated/numpy.outer.html
        """
        raise NotImplementedError()

    def reshape(self, a, shape):
        r"""
        Gives a new shape to a tensor without changing its data.

        This function follows the api from :any:`numpy.reshape`

        See: https://numpy.org/doc/stable/reference/generated/numpy.reshape.html
        """
        raise NotImplementedError()

    def seed(self, seed=None):
        r"""
        Sets the seed for the random generator.

        This function follows the api from :any:`numpy.random.seed`

        See: https://numpy.org/doc/stable/reference/generated/numpy.random.seed.html
        """
        raise NotImplementedError()

    def rand(self, *size, type_as=None):
        r"""
        Generate uniform random numbers.

        This function follows the api from :any:`numpy.random.rand`

        See: https://numpy.org/doc/stable/reference/generated/numpy.random.rand.html
        """
        raise NotImplementedError()

    def randn(self, *size, type_as=None):
        r"""
        Generate normal Gaussian random numbers.

        This function follows the api from :any:`numpy.random.rand`

        See: https://numpy.org/doc/stable/reference/generated/numpy.random.rand.html
        """
        raise NotImplementedError()

    def coo_matrix(self, data, rows, cols, shape=None, type_as=None):
        r"""
        Creates a sparse tensor in COOrdinate format.

        This function follows the api from :any:`scipy.sparse.coo_matrix`

        See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.html
        """
        raise NotImplementedError()

    def issparse(self, a):
        r"""
        Checks whether or not the input tensor is a sparse tensor.

        This function follows the api from :any:`scipy.sparse.issparse`

        See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.issparse.html
        """
        raise NotImplementedError()

    def tocsr(self, a):
        r"""
        Converts this matrix to Compressed Sparse Row format.

        This function follows the api from :any:`scipy.sparse.coo_matrix.tocsr`

        See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.tocsr.html
        """
        raise NotImplementedError()

    def eliminate_zeros(self, a, threshold=0.):
        r"""
        Removes entries smaller than the given threshold from the sparse tensor.

        This function follows the api from :any:`scipy.sparse.csr_matrix.eliminate_zeros`

        See: https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.sparse.csr_matrix.eliminate_zeros.html
        """
        raise NotImplementedError()

    def todense(self, a):
        r"""
        Converts a sparse tensor to a dense tensor.

        This function follows the api from :any:`scipy.sparse.csr_matrix.toarray`

        See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.toarray.html
        """
        raise NotImplementedError()

    def where(self, condition, x, y):
        r"""
        Returns elements chosen from x or y depending on condition.

        This function follows the api from :any:`numpy.where`

        See: https://numpy.org/doc/stable/reference/generated/numpy.where.html
        """
        raise NotImplementedError()

    def copy(self, a):
        r"""
        Returns a copy of the given tensor.

        This function follows the api from :any:`numpy.copy`

        See: https://numpy.org/doc/stable/reference/generated/numpy.copy.html
        """
        raise NotImplementedError()

    def allclose(self, a, b, rtol=1e-05, atol=1e-08, equal_nan=False):
        r"""
        Returns True if two arrays are element-wise equal within a tolerance.

        This function follows the api from :any:`numpy.allclose`

        See: https://numpy.org/doc/stable/reference/generated/numpy.allclose.html
        """
        raise NotImplementedError()

    def dtype_device(self, a):
        r"""
        Returns the dtype and the device of the given tensor.
        """
        raise NotImplementedError()

    def assert_same_dtype_device(self, a, b):
        r"""
        Checks whether or not the two given inputs have the same dtype as well as the same device
        """
        raise NotImplementedError()


class NumpyBackend(Backend):
    """
    NumPy implementation of the backend

    - `__name__` is "numpy"
    - `__type__` is np.ndarray
    """

    __name__ = 'numpy'
    __type__ = np.ndarray
    __type_list__ = [np.array(1, dtype=np.float32),
                     np.array(1, dtype=np.float64)]

    rng_ = np.random.RandomState()

    def to_numpy(self, a):
        return a

    def from_numpy(self, a, type_as=None):
        if type_as is None:
            return a
        elif isinstance(a, float):
            return a
        else:
            return a.astype(type_as.dtype)

    def set_gradients(self, val, inputs, grads):
        # No gradients for numpy
        return val

    def zeros(self, shape, type_as=None):
        if type_as is None:
            return np.zeros(shape)
        else:
            return np.zeros(shape, dtype=type_as.dtype)

    def ones(self, shape, type_as=None):
        if type_as is None:
            return np.ones(shape)
        else:
            return np.ones(shape, dtype=type_as.dtype)

    def arange(self, stop, start=0, step=1, type_as=None):
        return np.arange(start, stop, step)

    def full(self, shape, fill_value, type_as=None):
        if type_as is None:
            return np.full(shape, fill_value)
        else:
            return np.full(shape, fill_value, dtype=type_as.dtype)

    def eye(self, N, M=None, type_as=None):
        if type_as is None:
            return np.eye(N, M)
        else:
            return np.eye(N, M, dtype=type_as.dtype)

    def sum(self, a, axis=None, keepdims=False):
        return np.sum(a, axis, keepdims=keepdims)

    def cumsum(self, a, axis=None):
        return np.cumsum(a, axis)

    def max(self, a, axis=None, keepdims=False):
        return np.max(a, axis, keepdims=keepdims)

    def min(self, a, axis=None, keepdims=False):
        return np.min(a, axis, keepdims=keepdims)

    def maximum(self, a, b):
        return np.maximum(a, b)

    def minimum(self, a, b):
        return np.minimum(a, b)

    def dot(self, a, b):
        return np.dot(a, b)

    def abs(self, a):
        return np.abs(a)

    def exp(self, a):
        return np.exp(a)

    def log(self, a):
        return np.log(a)

    def sqrt(self, a):
        return np.sqrt(a)

    def power(self, a, exponents):
        return np.power(a, exponents)

    def norm(self, a):
        return np.sqrt(np.sum(np.square(a)))

    def any(self, a):
        return np.any(a)

    def isnan(self, a):
        return np.isnan(a)

    def isinf(self, a):
        return np.isinf(a)

    def einsum(self, subscripts, *operands):
        return np.einsum(subscripts, *operands)

    def sort(self, a, axis=-1):
        return np.sort(a, axis)

    def argsort(self, a, axis=-1):
        return np.argsort(a, axis)

    def searchsorted(self, a, v, side='left'):
        if a.ndim == 1:
            return np.searchsorted(a, v, side)
        else:
            # this is a not very efficient way to make numpy
            # searchsorted work on 2d arrays
            ret = np.empty(v.shape, dtype=int)
            for i in range(a.shape[0]):
                ret[i, :] = np.searchsorted(a[i, :], v[i, :], side)
            return ret

    def flip(self, a, axis=None):
        return np.flip(a, axis)

    def outer(self, a, b):
        return np.outer(a, b)

    def clip(self, a, a_min, a_max):
        return np.clip(a, a_min, a_max)

    def repeat(self, a, repeats, axis=None):
        return np.repeat(a, repeats, axis)

    def take_along_axis(self, arr, indices, axis):
        return np.take_along_axis(arr, indices, axis)

    def concatenate(self, arrays, axis=0):
        return np.concatenate(arrays, axis)

    def zero_pad(self, a, pad_width):
        return np.pad(a, pad_width)

    def argmax(self, a, axis=None):
        return np.argmax(a, axis=axis)

    def mean(self, a, axis=None):
        return np.mean(a, axis=axis)

    def std(self, a, axis=None):
        return np.std(a, axis=axis)

    def linspace(self, start, stop, num):
        return np.linspace(start, stop, num)

    def meshgrid(self, a, b):
        return np.meshgrid(a, b)

    def diag(self, a, k=0):
        return np.diag(a, k)

    def unique(self, a):
        return np.unique(a)

    def logsumexp(self, a, axis=None):
        return scipy.logsumexp(a, axis=axis)

    def stack(self, arrays, axis=0):
        return np.stack(arrays, axis)

    def reshape(self, a, shape):
        return np.reshape(a, shape)

    def seed(self, seed=None):
        if seed is not None:
            self.rng_.seed(seed)

    def rand(self, *size, type_as=None):
        return self.rng_.rand(*size)

    def randn(self, *size, type_as=None):
        return self.rng_.randn(*size)

    def coo_matrix(self, data, rows, cols, shape=None, type_as=None):
        if type_as is None:
            return coo_matrix((data, (rows, cols)), shape=shape)
        else:
            return coo_matrix((data, (rows, cols)), shape=shape, dtype=type_as.dtype)

    def issparse(self, a):
        return issparse(a)

    def tocsr(self, a):
        if self.issparse(a):
            return a.tocsr()
        else:
            return csr_matrix(a)

    def eliminate_zeros(self, a, threshold=0.):
        if threshold > 0:
            if self.issparse(a):
                a.data[self.abs(a.data) <= threshold] = 0
            else:
                a[self.abs(a) <= threshold] = 0
        if self.issparse(a):
            a.eliminate_zeros()
        return a

    def todense(self, a):
        if self.issparse(a):
            return a.toarray()
        else:
            return a

    def where(self, condition, x, y):
        return np.where(condition, x, y)

    def copy(self, a):
        return a.copy()

    def allclose(self, a, b, rtol=1e-05, atol=1e-08, equal_nan=False):
        return np.allclose(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan)

    def dtype_device(self, a):
        if hasattr(a, "dtype"):
            return a.dtype, "cpu"
        else:
            return type(a), "cpu"

    def assert_same_dtype_device(self, a, b):
        # numpy has implicit type conversion so we automatically validate the test
        pass


class JaxBackend(Backend):
    """
    JAX implementation of the backend

    - `__name__` is "jax"
    - `__type__` is jax.numpy.ndarray
    """

    __name__ = 'jax'
    __type__ = jax_type
    __type_list__ = None

    rng_ = None

    def __init__(self):
        self.rng_ = jax.random.PRNGKey(42)

        for d in jax.devices():
            self.__type_list__ = [jax.device_put(jnp.array(1, dtype=jnp.float32), d),
                                  jax.device_put(jnp.array(1, dtype=jnp.float64), d)]

    def to_numpy(self, a):
        return np.array(a)

    def _change_device(self, a, type_as):
        return jax.device_put(a, type_as.device_buffer.device())

    def from_numpy(self, a, type_as=None):
        if type_as is None:
            return jnp.array(a)
        else:
            return self._change_device(jnp.array(a).astype(type_as.dtype), type_as)

    def set_gradients(self, val, inputs, grads):
        from jax.flatten_util import ravel_pytree
        val, = jax.lax.stop_gradient((val,))

        ravelled_inputs, _ = ravel_pytree(inputs)
        ravelled_grads, _ = ravel_pytree(grads)

        aux = jnp.sum(ravelled_inputs * ravelled_grads) / 2
        aux = aux - jax.lax.stop_gradient(aux)

        val, = jax.tree_map(lambda z: z + aux, (val,))
        return val

    def zeros(self, shape, type_as=None):
        if type_as is None:
            return jnp.zeros(shape)
        else:
            return self._change_device(jnp.zeros(shape, dtype=type_as.dtype), type_as)

    def ones(self, shape, type_as=None):
        if type_as is None:
            return jnp.ones(shape)
        else:
            return self._change_device(jnp.ones(shape, dtype=type_as.dtype), type_as)

    def arange(self, stop, start=0, step=1, type_as=None):
        return jnp.arange(start, stop, step)

    def full(self, shape, fill_value, type_as=None):
        if type_as is None:
            return jnp.full(shape, fill_value)
        else:
            return self._change_device(jnp.full(shape, fill_value, dtype=type_as.dtype), type_as)

    def eye(self, N, M=None, type_as=None):
        if type_as is None:
            return jnp.eye(N, M)
        else:
            return self._change_device(jnp.eye(N, M, dtype=type_as.dtype), type_as)

    def sum(self, a, axis=None, keepdims=False):
        return jnp.sum(a, axis, keepdims=keepdims)

    def cumsum(self, a, axis=None):
        return jnp.cumsum(a, axis)

    def max(self, a, axis=None, keepdims=False):
        return jnp.max(a, axis, keepdims=keepdims)

    def min(self, a, axis=None, keepdims=False):
        return jnp.min(a, axis, keepdims=keepdims)

    def maximum(self, a, b):
        return jnp.maximum(a, b)

    def minimum(self, a, b):
        return jnp.minimum(a, b)

    def dot(self, a, b):
        return jnp.dot(a, b)

    def abs(self, a):
        return jnp.abs(a)

    def exp(self, a):
        return jnp.exp(a)

    def log(self, a):
        return jnp.log(a)

    def sqrt(self, a):
        return jnp.sqrt(a)

    def power(self, a, exponents):
        return jnp.power(a, exponents)

    def norm(self, a):
        return jnp.sqrt(jnp.sum(jnp.square(a)))

    def any(self, a):
        return jnp.any(a)

    def isnan(self, a):
        return jnp.isnan(a)

    def isinf(self, a):
        return jnp.isinf(a)

    def einsum(self, subscripts, *operands):
        return jnp.einsum(subscripts, *operands)

    def sort(self, a, axis=-1):
        return jnp.sort(a, axis)

    def argsort(self, a, axis=-1):
        return jnp.argsort(a, axis)

    def searchsorted(self, a, v, side='left'):
        if a.ndim == 1:
            return jnp.searchsorted(a, v, side)
        else:
            # this is a not very efficient way to make jax numpy
            # searchsorted work on 2d arrays
            return jnp.array([jnp.searchsorted(a[i, :], v[i, :], side) for i in range(a.shape[0])])

    def flip(self, a, axis=None):
        return jnp.flip(a, axis)

    def outer(self, a, b):
        return jnp.outer(a, b)

    def clip(self, a, a_min, a_max):
        return jnp.clip(a, a_min, a_max)

    def repeat(self, a, repeats, axis=None):
        return jnp.repeat(a, repeats, axis)

    def take_along_axis(self, arr, indices, axis):
        return jnp.take_along_axis(arr, indices, axis)

    def concatenate(self, arrays, axis=0):
        return jnp.concatenate(arrays, axis)

    def zero_pad(self, a, pad_width):
        return jnp.pad(a, pad_width)

    def argmax(self, a, axis=None):
        return jnp.argmax(a, axis=axis)

    def mean(self, a, axis=None):
        return jnp.mean(a, axis=axis)

    def std(self, a, axis=None):
        return jnp.std(a, axis=axis)

    def linspace(self, start, stop, num):
        return jnp.linspace(start, stop, num)

    def meshgrid(self, a, b):
        return jnp.meshgrid(a, b)

    def diag(self, a, k=0):
        return jnp.diag(a, k)

    def unique(self, a):
        return jnp.unique(a)

    def logsumexp(self, a, axis=None):
        return jscipy.logsumexp(a, axis=axis)

    def stack(self, arrays, axis=0):
        return jnp.stack(arrays, axis)

    def reshape(self, a, shape):
        return jnp.reshape(a, shape)

    def seed(self, seed=None):
        if seed is not None:
            self.rng_ = jax.random.PRNGKey(seed)

    def rand(self, *size, type_as=None):
        self.rng_, subkey = jax.random.split(self.rng_)
        if type_as is not None:
            return jax.random.uniform(subkey, shape=size, dtype=type_as.dtype)
        else:
            return jax.random.uniform(subkey, shape=size)

    def randn(self, *size, type_as=None):
        self.rng_, subkey = jax.random.split(self.rng_)
        if type_as is not None:
            return jax.random.normal(subkey, shape=size, dtype=type_as.dtype)
        else:
            return jax.random.normal(subkey, shape=size)

    def coo_matrix(self, data, rows, cols, shape=None, type_as=None):
        # Currently, JAX does not support sparse matrices
        data = self.to_numpy(data)
        rows = self.to_numpy(rows)
        cols = self.to_numpy(cols)
        nx = NumpyBackend()
        coo_matrix = nx.coo_matrix(data, rows, cols, shape=shape, type_as=type_as)
        matrix = nx.todense(coo_matrix)
        return self.from_numpy(matrix)

    def issparse(self, a):
        # Currently, JAX does not support sparse matrices
        return False

    def tocsr(self, a):
        # Currently, JAX does not support sparse matrices
        return a

    def eliminate_zeros(self, a, threshold=0.):
        # Currently, JAX does not support sparse matrices
        if threshold > 0:
            return self.where(
                self.abs(a) <= threshold,
                self.zeros((1,), type_as=a),
                a
            )
        return a

    def todense(self, a):
        # Currently, JAX does not support sparse matrices
        return a

    def where(self, condition, x, y):
        return jnp.where(condition, x, y)

    def copy(self, a):
        # No need to copy, JAX arrays are immutable
        return a

    def allclose(self, a, b, rtol=1e-05, atol=1e-08, equal_nan=False):
        return jnp.allclose(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan)

    def dtype_device(self, a):
        return a.dtype, a.device_buffer.device()

    def assert_same_dtype_device(self, a, b):
        a_dtype, a_device = self.dtype_device(a)
        b_dtype, b_device = self.dtype_device(b)

        assert a_dtype == b_dtype, "Dtype discrepancy"
        assert a_device == b_device, f"Device discrepancy. First input is on {str(a_device)}, whereas second input is on {str(b_device)}"


class TorchBackend(Backend):
    """
    PyTorch implementation of the backend

    - `__name__` is "torch"
    - `__type__` is torch.Tensor
    """

    __name__ = 'torch'
    __type__ = torch_type
    __type_list__ = None

    rng_ = None

    def __init__(self):

        self.rng_ = torch.Generator()
        self.rng_.seed()

        self.__type_list__ = [torch.tensor(1, dtype=torch.float32),
                              torch.tensor(1, dtype=torch.float64)]

        if torch.cuda.is_available():
            self.__type_list__.append(torch.tensor(1, dtype=torch.float32, device='cuda'))
            self.__type_list__.append(torch.tensor(1, dtype=torch.float64, device='cuda'))

        from torch.autograd import Function

        # define a function that takes inputs val and grads
        # ad returns a val tensor with proper gradients
        class ValFunction(Function):

            @staticmethod
            def forward(ctx, val, grads, *inputs):
                ctx.grads = grads
                return val

            @staticmethod
            def backward(ctx, grad_output):
                # the gradients are grad
                return (None, None) + ctx.grads

        self.ValFunction = ValFunction

    def to_numpy(self, a):
        return a.cpu().detach().numpy()

    def from_numpy(self, a, type_as=None):
        if isinstance(a, float):
            a = np.array(a)
        if type_as is None:
            return torch.from_numpy(a)
        else:
            return torch.as_tensor(a, dtype=type_as.dtype, device=type_as.device)

    def set_gradients(self, val, inputs, grads):

        Func = self.ValFunction()

        res = Func.apply(val, grads, *inputs)

        return res

    def zeros(self, shape, type_as=None):
        if isinstance(shape, int):
            shape = (shape,)
        if type_as is None:
            return torch.zeros(shape)
        else:
            return torch.zeros(shape, dtype=type_as.dtype, device=type_as.device)

    def ones(self, shape, type_as=None):
        if isinstance(shape, int):
            shape = (shape,)
        if type_as is None:
            return torch.ones(shape)
        else:
            return torch.ones(shape, dtype=type_as.dtype, device=type_as.device)

    def arange(self, stop, start=0, step=1, type_as=None):
        if type_as is None:
            return torch.arange(start, stop, step)
        else:
            return torch.arange(start, stop, step, device=type_as.device)

    def full(self, shape, fill_value, type_as=None):
        if isinstance(shape, int):
            shape = (shape,)
        if type_as is None:
            return torch.full(shape, fill_value)
        else:
            return torch.full(shape, fill_value, dtype=type_as.dtype, device=type_as.device)

    def eye(self, N, M=None, type_as=None):
        if M is None:
            M = N
        if type_as is None:
            return torch.eye(N, m=M)
        else:
            return torch.eye(N, m=M, dtype=type_as.dtype, device=type_as.device)

    def sum(self, a, axis=None, keepdims=False):
        if axis is None:
            return torch.sum(a)
        else:
            return torch.sum(a, axis, keepdim=keepdims)

    def cumsum(self, a, axis=None):
        if axis is None:
            return torch.cumsum(a.flatten(), 0)
        else:
            return torch.cumsum(a, axis)

    def max(self, a, axis=None, keepdims=False):
        if axis is None:
            return torch.max(a)
        else:
            return torch.max(a, axis, keepdim=keepdims)[0]

    def min(self, a, axis=None, keepdims=False):
        if axis is None:
            return torch.min(a)
        else:
            return torch.min(a, axis, keepdim=keepdims)[0]

    def maximum(self, a, b):
        if isinstance(a, int) or isinstance(a, float):
            a = torch.tensor([float(a)], dtype=b.dtype, device=b.device)
        if isinstance(b, int) or isinstance(b, float):
            b = torch.tensor([float(b)], dtype=a.dtype, device=a.device)
        if hasattr(torch, "maximum"):
            return torch.maximum(a, b)
        else:
            return torch.max(torch.stack(torch.broadcast_tensors(a, b)), axis=0)[0]

    def minimum(self, a, b):
        if isinstance(a, int) or isinstance(a, float):
            a = torch.tensor([float(a)], dtype=b.dtype, device=b.device)
        if isinstance(b, int) or isinstance(b, float):
            b = torch.tensor([float(b)], dtype=a.dtype, device=a.device)
        if hasattr(torch, "minimum"):
            return torch.minimum(a, b)
        else:
            return torch.min(torch.stack(torch.broadcast_tensors(a, b)), axis=0)[0]

    def dot(self, a, b):
        return torch.matmul(a, b)

    def abs(self, a):
        return torch.abs(a)

    def exp(self, a):
        return torch.exp(a)

    def log(self, a):
        return torch.log(a)

    def sqrt(self, a):
        return torch.sqrt(a)

    def power(self, a, exponents):
        return torch.pow(a, exponents)

    def norm(self, a):
        return torch.sqrt(torch.sum(torch.square(a)))

    def any(self, a):
        return torch.any(a)

    def isnan(self, a):
        return torch.isnan(a)

    def isinf(self, a):
        return torch.isinf(a)

    def einsum(self, subscripts, *operands):
        return torch.einsum(subscripts, *operands)

    def sort(self, a, axis=-1):
        sorted0, indices = torch.sort(a, dim=axis)
        return sorted0

    def argsort(self, a, axis=-1):
        sorted, indices = torch.sort(a, dim=axis)
        return indices

    def searchsorted(self, a, v, side='left'):
        right = (side != 'left')
        return torch.searchsorted(a, v, right=right)

    def flip(self, a, axis=None):
        if axis is None:
            return torch.flip(a, tuple(i for i in range(len(a.shape))))
        if isinstance(axis, int):
            return torch.flip(a, (axis,))
        else:
            return torch.flip(a, dims=axis)

    def outer(self, a, b):
        return torch.outer(a, b)

    def clip(self, a, a_min, a_max):
        return torch.clamp(a, a_min, a_max)

    def repeat(self, a, repeats, axis=None):
        return torch.repeat_interleave(a, repeats, dim=axis)

    def take_along_axis(self, arr, indices, axis):
        return torch.gather(arr, axis, indices)

    def concatenate(self, arrays, axis=0):
        return torch.cat(arrays, dim=axis)

    def zero_pad(self, a, pad_width):
        from torch.nn.functional import pad
        # pad_width is an array of ndim tuples indicating how many 0 before and after
        # we need to add. We first need to make it compliant with torch syntax, that
        # starts with the last dim, then second last, etc.
        how_pad = tuple(element for tupl in pad_width[::-1] for element in tupl)
        return pad(a, how_pad)

    def argmax(self, a, axis=None):
        return torch.argmax(a, dim=axis)

    def mean(self, a, axis=None):
        if axis is not None:
            return torch.mean(a, dim=axis)
        else:
            return torch.mean(a)

    def std(self, a, axis=None):
        if axis is not None:
            return torch.std(a, dim=axis, unbiased=False)
        else:
            return torch.std(a, unbiased=False)

    def linspace(self, start, stop, num):
        return torch.linspace(start, stop, num, dtype=torch.float64)

    def meshgrid(self, a, b):
        X, Y = torch.meshgrid(a, b)
        return X.T, Y.T

    def diag(self, a, k=0):
        return torch.diag(a, diagonal=k)

    def unique(self, a):
        return torch.unique(a)

    def logsumexp(self, a, axis=None):
        if axis is not None:
            return torch.logsumexp(a, dim=axis)
        else:
            return torch.logsumexp(a, dim=tuple(range(len(a.shape))))

    def stack(self, arrays, axis=0):
        return torch.stack(arrays, dim=axis)

    def reshape(self, a, shape):
        return torch.reshape(a, shape)

    def seed(self, seed=None):
        if isinstance(seed, int):
            self.rng_.manual_seed(seed)
        elif isinstance(seed, torch.Generator):
            self.rng_ = seed
        else:
            raise ValueError("Non compatible seed : {}".format(seed))

    def rand(self, *size, type_as=None):
        if type_as is not None:
            return torch.rand(size=size, generator=self.rng_, dtype=type_as.dtype, device=type_as.device)
        else:
            return torch.rand(size=size, generator=self.rng_)

    def randn(self, *size, type_as=None):
        if type_as is not None:
            return torch.randn(size=size, dtype=type_as.dtype, generator=self.rng_, device=type_as.device)
        else:
            return torch.randn(size=size, generator=self.rng_)

    def coo_matrix(self, data, rows, cols, shape=None, type_as=None):
        if type_as is None:
            return torch.sparse_coo_tensor(torch.stack([rows, cols]), data, size=shape)
        else:
            return torch.sparse_coo_tensor(
                torch.stack([rows, cols]), data, size=shape,
                dtype=type_as.dtype, device=type_as.device
            )

    def issparse(self, a):
        return getattr(a, "is_sparse", False) or getattr(a, "is_sparse_csr", False)

    def tocsr(self, a):
        # Versions older than 1.9 do not support CSR tensors. PyTorch 1.9 and 1.10 offer a very limited support
        return self.todense(a)

    def eliminate_zeros(self, a, threshold=0.):
        if self.issparse(a):
            if threshold > 0:
                mask = self.abs(a) <= threshold
                mask = ~mask
                mask = mask.nonzero()
            else:
                mask = a._values().nonzero()
            nv = a._values().index_select(0, mask.view(-1))
            ni = a._indices().index_select(1, mask.view(-1))
            return self.coo_matrix(nv, ni[0], ni[1], shape=a.shape, type_as=a)
        else:
            if threshold > 0:
                a[self.abs(a) <= threshold] = 0
            return a

    def todense(self, a):
        if self.issparse(a):
            return a.to_dense()
        else:
            return a

    def where(self, condition, x, y):
        return torch.where(condition, x, y)

    def copy(self, a):
        return torch.clone(a)

    def allclose(self, a, b, rtol=1e-05, atol=1e-08, equal_nan=False):
        return torch.allclose(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan)

    def dtype_device(self, a):
        return a.dtype, a.device

    def assert_same_dtype_device(self, a, b):
        a_dtype, a_device = self.dtype_device(a)
        b_dtype, b_device = self.dtype_device(b)

        assert a_dtype == b_dtype, "Dtype discrepancy"
        assert a_device == b_device, f"Device discrepancy. First input is on {str(a_device)}, whereas second input is on {str(b_device)}"