summaryrefslogtreecommitdiff
path: root/ot/backend.py
blob: 07792435086bbf7302c69c58ae8824c6998eb11f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
# -*- coding: utf-8 -*-
"""
Multi-lib backend for POT

The goal is to write backend-agnostic code. Whether you're using Numpy, PyTorch,
Jax, Cupy, or Tensorflow, POT code should work nonetheless.
To achieve that, POT provides backend classes which implements functions in their respective backend
imitating Numpy API. As a convention, we use nx instead of np to refer to the backend.

Examples
--------

>>> from ot.utils import list_to_array
>>> from ot.backend import get_backend
>>> def f(a, b):  # the function does not know which backend to use
...     a, b = list_to_array(a, b)  # if a list in given, make it an array
...     nx = get_backend(a, b)  # infer the backend from the arguments
...     c = nx.dot(a, b)  # now use the backend to do any calculation
...     return c

.. warning::
    Tensorflow only works with the Numpy API. To activate it, please run the following:

    .. code-block::

        from tensorflow.python.ops.numpy_ops import np_config
        np_config.enable_numpy_behavior()

Performance
--------

- CPU: Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz
- GPU: Tesla V100-SXM2-32GB
- Date of the benchmark: December 8th, 2021
- Commit of benchmark: PR #316, https://github.com/PythonOT/POT/pull/316

.. raw:: html

    <style>
    #perftable {
        width: 100%;
        margin-bottom: 1em;
    }

    #perftable table{
        border-collapse: collapse;
        table-layout: fixed;
        width: 100%;
    }

    #perftable th, #perftable td {
        border: 1px solid #ddd;
        padding: 8px;
        font-size: smaller;
    }
    </style>

    <div id="perftable">
    <table>
    <tr><th align="center" colspan="8">Sinkhorn Knopp - Averaged on 100 runs</th></tr>
    <tr><th align="center">Bitsize</th><th align="center" colspan="7">32 bits</th></tr>
    <tr><th align="center">Device</th><th align="center" colspan="3.0"">CPU</th><th align="center" colspan="4.0">GPU</tr>
    <tr><th align="center">Sample size</th><th align="center">Numpy</th><th align="center">Pytorch</th><th align="center">Tensorflow</th><th align="center">Cupy</th><th align="center">Jax</th><th align="center">Pytorch</th><th align="center">Tensorflow</th></tr>
    <tr><td align="center">50</td><td align="center">0.0008</td><td align="center">0.0022</td><td align="center">0.0151</td><td align="center">0.0095</td><td align="center">0.0193</td><td align="center">0.0051</td><td align="center">0.0293</td></tr>
    <tr><td align="center">100</td><td align="center">0.0005</td><td align="center">0.0013</td><td align="center">0.0097</td><td align="center">0.0057</td><td align="center">0.0115</td><td align="center">0.0029</td><td align="center">0.0173</td></tr>
    <tr><td align="center">500</td><td align="center">0.0009</td><td align="center">0.0016</td><td align="center">0.0110</td><td align="center">0.0058</td><td align="center">0.0115</td><td align="center">0.0029</td><td align="center">0.0166</td></tr>
    <tr><td align="center">1000</td><td align="center">0.0021</td><td align="center">0.0021</td><td align="center">0.0145</td><td align="center">0.0056</td><td align="center">0.0118</td><td align="center">0.0029</td><td align="center">0.0168</td></tr>
    <tr><td align="center">2000</td><td align="center">0.0069</td><td align="center">0.0043</td><td align="center">0.0278</td><td align="center">0.0059</td><td align="center">0.0118</td><td align="center">0.0030</td><td align="center">0.0165</td></tr>
    <tr><td align="center">5000</td><td align="center">0.0707</td><td align="center">0.0314</td><td align="center">0.1395</td><td align="center">0.0074</td><td align="center">0.0125</td><td align="center">0.0035</td><td align="center">0.0198</td></tr>
    <tr><td colspan="8">&nbsp;</td></tr>
    <tr><th align="center">Bitsize</th><th align="center" colspan="7">64 bits</th></tr>
    <tr><th align="center">Device</th><th align="center" colspan="3.0"">CPU</th><th align="center" colspan="4.0">GPU</tr>
    <tr><th align="center">Sample size</th><th align="center">Numpy</th><th align="center">Pytorch</th><th align="center">Tensorflow</th><th align="center">Cupy</th><th align="center">Jax</th><th align="center">Pytorch</th><th align="center">Tensorflow</th></tr>
    <tr><td align="center">50</td><td align="center">0.0008</td><td align="center">0.0020</td><td align="center">0.0154</td><td align="center">0.0093</td><td align="center">0.0191</td><td align="center">0.0051</td><td align="center">0.0328</td></tr>
    <tr><td align="center">100</td><td align="center">0.0005</td><td align="center">0.0013</td><td align="center">0.0094</td><td align="center">0.0056</td><td align="center">0.0114</td><td align="center">0.0029</td><td align="center">0.0169</td></tr>
    <tr><td align="center">500</td><td align="center">0.0013</td><td align="center">0.0017</td><td align="center">0.0120</td><td align="center">0.0059</td><td align="center">0.0116</td><td align="center">0.0029</td><td align="center">0.0168</td></tr>
    <tr><td align="center">1000</td><td align="center">0.0034</td><td align="center">0.0027</td><td align="center">0.0177</td><td align="center">0.0058</td><td align="center">0.0118</td><td align="center">0.0029</td><td align="center">0.0167</td></tr>
    <tr><td align="center">2000</td><td align="center">0.0146</td><td align="center">0.0075</td><td align="center">0.0436</td><td align="center">0.0059</td><td align="center">0.0120</td><td align="center">0.0029</td><td align="center">0.0165</td></tr>
    <tr><td align="center">5000</td><td align="center">0.1467</td><td align="center">0.0568</td><td align="center">0.2468</td><td align="center">0.0077</td><td align="center">0.0146</td><td align="center">0.0045</td><td align="center">0.0204</td></tr>
    </table>
    </div>
"""

# Author: Remi Flamary <remi.flamary@polytechnique.edu>
#         Nicolas Courty <ncourty@irisa.fr>
#
# License: MIT License

import numpy as np
import scipy
import scipy.linalg
import scipy.special as special
from scipy.sparse import issparse, coo_matrix, csr_matrix
import warnings
import time

try:
    import torch
    torch_type = torch.Tensor
except ImportError:
    torch = False
    torch_type = float

try:
    import jax
    import jax.numpy as jnp
    import jax.scipy.special as jspecial
    from jax.lib import xla_bridge
    jax_type = jax.numpy.ndarray
except ImportError:
    jax = False
    jax_type = float

try:
    import cupy as cp
    import cupyx
    cp_type = cp.ndarray
except ImportError:
    cp = False
    cp_type = float

try:
    import tensorflow as tf
    import tensorflow.experimental.numpy as tnp
    tf_type = tf.Tensor
except ImportError:
    tf = False
    tf_type = float


str_type_error = "All array should be from the same type/backend. Current types are : {}"


def get_backend_list():
    """Returns the list of available backends"""
    lst = [NumpyBackend(), ]

    if torch:
        lst.append(TorchBackend())

    if jax:
        lst.append(JaxBackend())

    if cp:  # pragma: no cover
        lst.append(CupyBackend())

    if tf:
        lst.append(TensorflowBackend())

    return lst


def get_backend(*args):
    """Returns the proper backend for a list of input arrays

        Also raises TypeError if all arrays are not from the same backend
    """
    # check that some arrays given
    if not len(args) > 0:
        raise ValueError(" The function takes at least one parameter")
    # check all same type
    if not len(set(type(a) for a in args)) == 1:
        raise ValueError(str_type_error.format([type(a) for a in args]))

    if isinstance(args[0], np.ndarray):
        return NumpyBackend()
    elif isinstance(args[0], torch_type):
        return TorchBackend()
    elif isinstance(args[0], jax_type):
        return JaxBackend()
    elif isinstance(args[0], cp_type):  # pragma: no cover
        return CupyBackend()
    elif isinstance(args[0], tf_type):
        return TensorflowBackend()
    else:
        raise ValueError("Unknown type of non implemented backend.")


def to_numpy(*args):
    """Returns numpy arrays from any compatible backend"""

    if len(args) == 1:
        return get_backend(args[0]).to_numpy(args[0])
    else:
        return [get_backend(a).to_numpy(a) for a in args]


class Backend():
    """
    Backend abstract class.
    Implementations: :py:class:`JaxBackend`, :py:class:`NumpyBackend`, :py:class:`TorchBackend`,
    :py:class:`CupyBackend`, :py:class:`TensorflowBackend`

    - The `__name__` class attribute refers to the name of the backend.
    - The `__type__` class attribute refers to the data structure used by the backend.
    """

    __name__ = None
    __type__ = None
    __type_list__ = None

    rng_ = None

    def __str__(self):
        return self.__name__

    # convert batch of tensors to numpy
    def to_numpy(self, *arrays):
        """Returns the numpy version of tensors"""
        if len(arrays) == 1:
            return self._to_numpy(arrays[0])
        else:
            return [self._to_numpy(array) for array in arrays]

    # convert a tensor to numpy
    def _to_numpy(self, a):
        """Returns the numpy version of a tensor"""
        raise NotImplementedError()

    # convert batch of arrays from numpy
    def from_numpy(self, *arrays, type_as=None):
        """Creates tensors cloning a numpy array, with the given precision (defaulting to input's precision) and the given device (in case of GPUs)"""
        if len(arrays) == 1:
            return self._from_numpy(arrays[0], type_as=type_as)
        else:
            return [self._from_numpy(array, type_as=type_as) for array in arrays]

    # convert an array from numpy
    def _from_numpy(self, a, type_as=None):
        """Creates a tensor cloning a numpy array, with the given precision (defaulting to input's precision) and the given device (in case of GPUs)"""
        raise NotImplementedError()

    def set_gradients(self, val, inputs, grads):
        """Define the gradients for the value val wrt the inputs """
        raise NotImplementedError()

    def zeros(self, shape, type_as=None):
        r"""
        Creates a tensor full of zeros.

        This function follows the api from :any:`numpy.zeros`

        See: https://numpy.org/doc/stable/reference/generated/numpy.zeros.html
        """
        raise NotImplementedError()

    def ones(self, shape, type_as=None):
        r"""
        Creates a tensor full of ones.

        This function follows the api from :any:`numpy.ones`

        See: https://numpy.org/doc/stable/reference/generated/numpy.ones.html
        """
        raise NotImplementedError()

    def arange(self, stop, start=0, step=1, type_as=None):
        r"""
        Returns evenly spaced values within a given interval.

        This function follows the api from :any:`numpy.arange`

        See: https://numpy.org/doc/stable/reference/generated/numpy.arange.html
        """
        raise NotImplementedError()

    def full(self, shape, fill_value, type_as=None):
        r"""
        Creates a tensor with given shape, filled with given value.

        This function follows the api from :any:`numpy.full`

        See: https://numpy.org/doc/stable/reference/generated/numpy.full.html
        """
        raise NotImplementedError()

    def eye(self, N, M=None, type_as=None):
        r"""
        Creates the identity matrix of given size.

        This function follows the api from :any:`numpy.eye`

        See: https://numpy.org/doc/stable/reference/generated/numpy.eye.html
        """
        raise NotImplementedError()

    def sum(self, a, axis=None, keepdims=False):
        r"""
        Sums tensor elements over given dimensions.

        This function follows the api from :any:`numpy.sum`

        See: https://numpy.org/doc/stable/reference/generated/numpy.sum.html
        """
        raise NotImplementedError()

    def cumsum(self, a, axis=None):
        r"""
        Returns the cumulative sum of tensor elements over given dimensions.

        This function follows the api from :any:`numpy.cumsum`

        See: https://numpy.org/doc/stable/reference/generated/numpy.cumsum.html
        """
        raise NotImplementedError()

    def max(self, a, axis=None, keepdims=False):
        r"""
        Returns the maximum of an array or maximum along given dimensions.

        This function follows the api from :any:`numpy.amax`

        See: https://numpy.org/doc/stable/reference/generated/numpy.amax.html
        """
        raise NotImplementedError()

    def min(self, a, axis=None, keepdims=False):
        r"""
        Returns the maximum of an array or maximum along given dimensions.

        This function follows the api from :any:`numpy.amin`

        See: https://numpy.org/doc/stable/reference/generated/numpy.amin.html
        """
        raise NotImplementedError()

    def maximum(self, a, b):
        r"""
        Returns element-wise maximum of array elements.

        This function follows the api from :any:`numpy.maximum`

        See: https://numpy.org/doc/stable/reference/generated/numpy.maximum.html
        """
        raise NotImplementedError()

    def minimum(self, a, b):
        r"""
        Returns element-wise minimum of array elements.

        This function follows the api from :any:`numpy.minimum`

        See: https://numpy.org/doc/stable/reference/generated/numpy.minimum.html
        """
        raise NotImplementedError()

    def dot(self, a, b):
        r"""
        Returns the dot product of two tensors.

        This function follows the api from :any:`numpy.dot`

        See: https://numpy.org/doc/stable/reference/generated/numpy.dot.html
        """
        raise NotImplementedError()

    def abs(self, a):
        r"""
        Computes the absolute value element-wise.

        This function follows the api from :any:`numpy.absolute`

        See: https://numpy.org/doc/stable/reference/generated/numpy.absolute.html
        """
        raise NotImplementedError()

    def exp(self, a):
        r"""
        Computes the exponential value element-wise.

        This function follows the api from :any:`numpy.exp`

        See: https://numpy.org/doc/stable/reference/generated/numpy.exp.html
        """
        raise NotImplementedError()

    def log(self, a):
        r"""
        Computes the natural logarithm, element-wise.

        This function follows the api from :any:`numpy.log`

        See: https://numpy.org/doc/stable/reference/generated/numpy.log.html
        """
        raise NotImplementedError()

    def sqrt(self, a):
        r"""
        Returns the non-ngeative square root of a tensor, element-wise.

        This function follows the api from :any:`numpy.sqrt`

        See: https://numpy.org/doc/stable/reference/generated/numpy.sqrt.html
        """
        raise NotImplementedError()

    def power(self, a, exponents):
        r"""
        First tensor elements raised to powers from second tensor, element-wise.

        This function follows the api from :any:`numpy.power`

        See: https://numpy.org/doc/stable/reference/generated/numpy.power.html
        """
        raise NotImplementedError()

    def norm(self, a):
        r"""
        Computes the matrix frobenius norm.

        This function follows the api from :any:`numpy.linalg.norm`

        See: https://numpy.org/doc/stable/reference/generated/numpy.linalg.norm.html
        """
        raise NotImplementedError()

    def any(self, a):
        r"""
        Tests whether any tensor element along given dimensions evaluates to True.

        This function follows the api from :any:`numpy.any`

        See: https://numpy.org/doc/stable/reference/generated/numpy.any.html
        """
        raise NotImplementedError()

    def isnan(self, a):
        r"""
        Tests element-wise for NaN and returns result as a boolean tensor.

        This function follows the api from :any:`numpy.isnan`

        See: https://numpy.org/doc/stable/reference/generated/numpy.isnan.html
        """
        raise NotImplementedError()

    def isinf(self, a):
        r"""
        Tests element-wise for positive or negative infinity and returns result as a boolean tensor.

        This function follows the api from :any:`numpy.isinf`

        See: https://numpy.org/doc/stable/reference/generated/numpy.isinf.html
        """
        raise NotImplementedError()

    def einsum(self, subscripts, *operands):
        r"""
        Evaluates the Einstein summation convention on the operands.

        This function follows the api from :any:`numpy.einsum`

        See: https://numpy.org/doc/stable/reference/generated/numpy.einsum.html
        """
        raise NotImplementedError()

    def sort(self, a, axis=-1):
        r"""
        Returns a sorted copy of a tensor.

        This function follows the api from :any:`numpy.sort`

        See: https://numpy.org/doc/stable/reference/generated/numpy.sort.html
        """
        raise NotImplementedError()

    def argsort(self, a, axis=None):
        r"""
        Returns the indices that would sort a tensor.

        This function follows the api from :any:`numpy.argsort`

        See: https://numpy.org/doc/stable/reference/generated/numpy.argsort.html
        """
        raise NotImplementedError()

    def searchsorted(self, a, v, side='left'):
        r"""
        Finds indices where elements should be inserted to maintain order in given tensor.

        This function follows the api from :any:`numpy.searchsorted`

        See: https://numpy.org/doc/stable/reference/generated/numpy.searchsorted.html
        """
        raise NotImplementedError()

    def flip(self, a, axis=None):
        r"""
        Reverses the order of elements in a tensor along given dimensions.

        This function follows the api from :any:`numpy.flip`

        See: https://numpy.org/doc/stable/reference/generated/numpy.flip.html
        """
        raise NotImplementedError()

    def clip(self, a, a_min, a_max):
        """
        Limits the values in a tensor.

        This function follows the api from :any:`numpy.clip`

        See: https://numpy.org/doc/stable/reference/generated/numpy.clip.html
        """
        raise NotImplementedError()

    def repeat(self, a, repeats, axis=None):
        r"""
        Repeats elements of a tensor.

        This function follows the api from :any:`numpy.repeat`

        See: https://numpy.org/doc/stable/reference/generated/numpy.repeat.html
        """
        raise NotImplementedError()

    def take_along_axis(self, arr, indices, axis):
        r"""
        Gathers elements of a tensor along given dimensions.

        This function follows the api from :any:`numpy.take_along_axis`

        See: https://numpy.org/doc/stable/reference/generated/numpy.take_along_axis.html
        """
        raise NotImplementedError()

    def concatenate(self, arrays, axis=0):
        r"""
        Joins a sequence of tensors along an existing dimension.

        This function follows the api from :any:`numpy.concatenate`

        See: https://numpy.org/doc/stable/reference/generated/numpy.concatenate.html
        """
        raise NotImplementedError()

    def zero_pad(self, a, pad_width, value=0):
        r"""
        Pads a tensor with a given value (0 by default).

        This function follows the api from :any:`numpy.pad`

        See: https://numpy.org/doc/stable/reference/generated/numpy.pad.html
        """
        raise NotImplementedError()

    def argmax(self, a, axis=None):
        r"""
        Returns the indices of the maximum values of a tensor along given dimensions.

        This function follows the api from :any:`numpy.argmax`

        See: https://numpy.org/doc/stable/reference/generated/numpy.argmax.html
        """
        raise NotImplementedError()

    def argmin(self, a, axis=None):
        r"""
        Returns the indices of the minimum values of a tensor along given dimensions.

        This function follows the api from :any:`numpy.argmin`

        See: https://numpy.org/doc/stable/reference/generated/numpy.argmin.html
        """
        raise NotImplementedError()

    def mean(self, a, axis=None):
        r"""
        Computes the arithmetic mean of a tensor along given dimensions.

        This function follows the api from :any:`numpy.mean`

        See: https://numpy.org/doc/stable/reference/generated/numpy.mean.html
        """
        raise NotImplementedError()

    def std(self, a, axis=None):
        r"""
        Computes the standard deviation of a tensor along given dimensions.

        This function follows the api from :any:`numpy.std`

        See: https://numpy.org/doc/stable/reference/generated/numpy.std.html
        """
        raise NotImplementedError()

    def linspace(self, start, stop, num):
        r"""
        Returns a specified number of evenly spaced values over a given interval.

        This function follows the api from :any:`numpy.linspace`

        See: https://numpy.org/doc/stable/reference/generated/numpy.linspace.html
        """
        raise NotImplementedError()

    def meshgrid(self, a, b):
        r"""
        Returns coordinate matrices from coordinate vectors (Numpy convention).

        This function follows the api from :any:`numpy.meshgrid`

        See: https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html
        """
        raise NotImplementedError()

    def diag(self, a, k=0):
        r"""
        Extracts or constructs a diagonal tensor.

        This function follows the api from :any:`numpy.diag`

        See: https://numpy.org/doc/stable/reference/generated/numpy.diag.html
        """
        raise NotImplementedError()

    def unique(self, a):
        r"""
        Finds unique elements of given tensor.

        This function follows the api from :any:`numpy.unique`

        See: https://numpy.org/doc/stable/reference/generated/numpy.unique.html
        """
        raise NotImplementedError()

    def logsumexp(self, a, axis=None):
        r"""
        Computes the log of the sum of exponentials of input elements.

        This function follows the api from :any:`scipy.special.logsumexp`

        See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.logsumexp.html
        """
        raise NotImplementedError()

    def stack(self, arrays, axis=0):
        r"""
        Joins a sequence of tensors along a new dimension.

        This function follows the api from :any:`numpy.stack`

        See: https://numpy.org/doc/stable/reference/generated/numpy.stack.html
        """
        raise NotImplementedError()

    def outer(self, a, b):
        r"""
        Computes the outer product between two vectors.

        This function follows the api from :any:`numpy.outer`

        See: https://numpy.org/doc/stable/reference/generated/numpy.outer.html
        """
        raise NotImplementedError()

    def reshape(self, a, shape):
        r"""
        Gives a new shape to a tensor without changing its data.

        This function follows the api from :any:`numpy.reshape`

        See: https://numpy.org/doc/stable/reference/generated/numpy.reshape.html
        """
        raise NotImplementedError()

    def seed(self, seed=None):
        r"""
        Sets the seed for the random generator.

        This function follows the api from :any:`numpy.random.seed`

        See: https://numpy.org/doc/stable/reference/generated/numpy.random.seed.html
        """
        raise NotImplementedError()

    def rand(self, *size, type_as=None):
        r"""
        Generate uniform random numbers.

        This function follows the api from :any:`numpy.random.rand`

        See: https://numpy.org/doc/stable/reference/generated/numpy.random.rand.html
        """
        raise NotImplementedError()

    def randn(self, *size, type_as=None):
        r"""
        Generate normal Gaussian random numbers.

        This function follows the api from :any:`numpy.random.rand`

        See: https://numpy.org/doc/stable/reference/generated/numpy.random.rand.html
        """
        raise NotImplementedError()

    def coo_matrix(self, data, rows, cols, shape=None, type_as=None):
        r"""
        Creates a sparse tensor in COOrdinate format.

        This function follows the api from :any:`scipy.sparse.coo_matrix`

        See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.html
        """
        raise NotImplementedError()

    def issparse(self, a):
        r"""
        Checks whether or not the input tensor is a sparse tensor.

        This function follows the api from :any:`scipy.sparse.issparse`

        See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.issparse.html
        """
        raise NotImplementedError()

    def tocsr(self, a):
        r"""
        Converts this matrix to Compressed Sparse Row format.

        This function follows the api from :any:`scipy.sparse.coo_matrix.tocsr`

        See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.tocsr.html
        """
        raise NotImplementedError()

    def eliminate_zeros(self, a, threshold=0.):
        r"""
        Removes entries smaller than the given threshold from the sparse tensor.

        This function follows the api from :any:`scipy.sparse.csr_matrix.eliminate_zeros`

        See: https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.sparse.csr_matrix.eliminate_zeros.html
        """
        raise NotImplementedError()

    def todense(self, a):
        r"""
        Converts a sparse tensor to a dense tensor.

        This function follows the api from :any:`scipy.sparse.csr_matrix.toarray`

        See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.toarray.html
        """
        raise NotImplementedError()

    def where(self, condition, x, y):
        r"""
        Returns elements chosen from x or y depending on condition.

        This function follows the api from :any:`numpy.where`

        See: https://numpy.org/doc/stable/reference/generated/numpy.where.html
        """
        raise NotImplementedError()

    def copy(self, a):
        r"""
        Returns a copy of the given tensor.

        This function follows the api from :any:`numpy.copy`

        See: https://numpy.org/doc/stable/reference/generated/numpy.copy.html
        """
        raise NotImplementedError()

    def allclose(self, a, b, rtol=1e-05, atol=1e-08, equal_nan=False):
        r"""
        Returns True if two arrays are element-wise equal within a tolerance.

        This function follows the api from :any:`numpy.allclose`

        See: https://numpy.org/doc/stable/reference/generated/numpy.allclose.html
        """
        raise NotImplementedError()

    def dtype_device(self, a):
        r"""
        Returns the dtype and the device of the given tensor.
        """
        raise NotImplementedError()

    def assert_same_dtype_device(self, a, b):
        r"""
        Checks whether or not the two given inputs have the same dtype as well as the same device
        """
        raise NotImplementedError()

    def squeeze(self, a, axis=None):
        r"""
        Remove axes of length one from a.

        This function follows the api from :any:`numpy.squeeze`.

        See: https://numpy.org/doc/stable/reference/generated/numpy.squeeze.html
        """
        raise NotImplementedError()

    def bitsize(self, type_as):
        r"""
        Gives the number of bits used by the data type of the given tensor.
        """
        raise NotImplementedError()

    def device_type(self, type_as):
        r"""
        Returns CPU or GPU depending on the device where the given tensor is located.
        """
        raise NotImplementedError()

    def _bench(self, callable, *args, n_runs=1, warmup_runs=1):
        r"""
        Executes a benchmark of the given callable with the given arguments.
        """
        raise NotImplementedError()

    def solve(self, a, b):
        r"""
        Solves a linear matrix equation, or system of linear scalar equations.

        This function follows the api from :any:`numpy.linalg.solve`.

        See: https://numpy.org/doc/stable/reference/generated/numpy.linalg.solve.html
        """
        raise NotImplementedError()

    def trace(self, a):
        r"""
        Returns the sum along diagonals of the array.

        This function follows the api from :any:`numpy.trace`.

        See: https://numpy.org/doc/stable/reference/generated/numpy.trace.html
        """
        raise NotImplementedError()

    def inv(self, a):
        r"""
        Computes the inverse of a matrix.

        This function follows the api from :any:`scipy.linalg.inv`.

        See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.inv.html
        """
        raise NotImplementedError()

    def sqrtm(self, a):
        r"""
        Computes the matrix square root. Requires input to be definite positive.

        This function follows the api from :any:`scipy.linalg.sqrtm`.

        See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.sqrtm.html
        """
        raise NotImplementedError()

    def kl_div(self, p, q, eps=1e-16):
        r"""
        Computes the Kullback-Leibler divergence.

        This function follows the api from :any:`scipy.stats.entropy`.

        Parameter eps is used to avoid numerical errors and is added in the log.

        .. math::
             KL(p,q) = \sum_i p(i) \log (\frac{p(i)}{q(i)}+\epsilon)

        See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.entropy.html
        """
        raise NotImplementedError()

    def isfinite(self, a):
        r"""
        Tests element-wise for finiteness (not infinity and not Not a Number).

        This function follows the api from :any:`numpy.isfinite`.

        See: https://numpy.org/doc/stable/reference/generated/numpy.isfinite.html
        """
        raise NotImplementedError()

    def array_equal(self, a, b):
        r"""
        True if two arrays have the same shape and elements, False otherwise.

        This function follows the api from :any:`numpy.array_equal`.

        See: https://numpy.org/doc/stable/reference/generated/numpy.array_equal.html
        """
        raise NotImplementedError()

    def is_floating_point(self, a):
        r"""
        Returns whether or not the input consists of floats
        """
        raise NotImplementedError()

    def tile(self, a, reps):
        r"""
        Construct an array by repeating a the number of times given by reps

        See: https://numpy.org/doc/stable/reference/generated/numpy.tile.html
        """
        raise NotImplementedError()

    def floor(self, a):
        r"""
        Return the floor of the input element-wise

        See: https://numpy.org/doc/stable/reference/generated/numpy.floor.html
        """
        raise NotImplementedError()

    def prod(self, a, axis=None):
        r"""
        Return the product of all elements.

        See: https://numpy.org/doc/stable/reference/generated/numpy.prod.html
        """
        raise NotImplementedError()

    def sort2(self, a, axis=None):
        r"""
        Return the sorted array and the indices to sort the array

        See: https://pytorch.org/docs/stable/generated/torch.sort.html
        """
        raise NotImplementedError()

    def qr(self, a):
        r"""
        Return the QR factorization

        See: https://numpy.org/doc/stable/reference/generated/numpy.linalg.qr.html
        """
        raise NotImplementedError()

    def atan2(self, a, b):
        r"""
        Element wise arctangent

        See: https://numpy.org/doc/stable/reference/generated/numpy.arctan2.html
        """
        raise NotImplementedError()

    def transpose(self, a, axes=None):
        r"""
        Returns a tensor that is a transposed version of a. The given dimensions dim0 and dim1 are swapped.

        See: https://numpy.org/doc/stable/reference/generated/numpy.transpose.html
        """
        raise NotImplementedError()


class NumpyBackend(Backend):
    """
    NumPy implementation of the backend

    - `__name__` is "numpy"
    - `__type__` is np.ndarray
    """

    __name__ = 'numpy'
    __type__ = np.ndarray
    __type_list__ = [np.array(1, dtype=np.float32),
                     np.array(1, dtype=np.float64)]

    rng_ = np.random.RandomState()

    def _to_numpy(self, a):
        return a

    def _from_numpy(self, a, type_as=None):
        if type_as is None:
            return a
        elif isinstance(a, float):
            return a
        else:
            return a.astype(type_as.dtype)

    def set_gradients(self, val, inputs, grads):
        # No gradients for numpy
        return val

    def zeros(self, shape, type_as=None):
        if type_as is None:
            return np.zeros(shape)
        else:
            return np.zeros(shape, dtype=type_as.dtype)

    def ones(self, shape, type_as=None):
        if type_as is None:
            return np.ones(shape)
        else:
            return np.ones(shape, dtype=type_as.dtype)

    def arange(self, stop, start=0, step=1, type_as=None):
        return np.arange(start, stop, step)

    def full(self, shape, fill_value, type_as=None):
        if type_as is None:
            return np.full(shape, fill_value)
        else:
            return np.full(shape, fill_value, dtype=type_as.dtype)

    def eye(self, N, M=None, type_as=None):
        if type_as is None:
            return np.eye(N, M)
        else:
            return np.eye(N, M, dtype=type_as.dtype)

    def sum(self, a, axis=None, keepdims=False):
        return np.sum(a, axis, keepdims=keepdims)

    def cumsum(self, a, axis=None):
        return np.cumsum(a, axis)

    def max(self, a, axis=None, keepdims=False):
        return np.max(a, axis, keepdims=keepdims)

    def min(self, a, axis=None, keepdims=False):
        return np.min(a, axis, keepdims=keepdims)

    def maximum(self, a, b):
        return np.maximum(a, b)

    def minimum(self, a, b):
        return np.minimum(a, b)

    def dot(self, a, b):
        return np.dot(a, b)

    def abs(self, a):
        return np.abs(a)

    def exp(self, a):
        return np.exp(a)

    def log(self, a):
        return np.log(a)

    def sqrt(self, a):
        return np.sqrt(a)

    def power(self, a, exponents):
        return np.power(a, exponents)

    def norm(self, a):
        return np.sqrt(np.sum(np.square(a)))

    def any(self, a):
        return np.any(a)

    def isnan(self, a):
        return np.isnan(a)

    def isinf(self, a):
        return np.isinf(a)

    def einsum(self, subscripts, *operands):
        return np.einsum(subscripts, *operands)

    def sort(self, a, axis=-1):
        return np.sort(a, axis)

    def argsort(self, a, axis=-1):
        return np.argsort(a, axis)

    def searchsorted(self, a, v, side='left'):
        if a.ndim == 1:
            return np.searchsorted(a, v, side)
        else:
            # this is a not very efficient way to make numpy
            # searchsorted work on 2d arrays
            ret = np.empty(v.shape, dtype=int)
            for i in range(a.shape[0]):
                ret[i, :] = np.searchsorted(a[i, :], v[i, :], side)
            return ret

    def flip(self, a, axis=None):
        return np.flip(a, axis)

    def outer(self, a, b):
        return np.outer(a, b)

    def clip(self, a, a_min, a_max):
        return np.clip(a, a_min, a_max)

    def repeat(self, a, repeats, axis=None):
        return np.repeat(a, repeats, axis)

    def take_along_axis(self, arr, indices, axis):
        return np.take_along_axis(arr, indices, axis)

    def concatenate(self, arrays, axis=0):
        return np.concatenate(arrays, axis)

    def zero_pad(self, a, pad_width, value=0):
        return np.pad(a, pad_width, constant_values=value)

    def argmax(self, a, axis=None):
        return np.argmax(a, axis=axis)

    def argmin(self, a, axis=None):
        return np.argmin(a, axis=axis)

    def mean(self, a, axis=None):
        return np.mean(a, axis=axis)

    def std(self, a, axis=None):
        return np.std(a, axis=axis)

    def linspace(self, start, stop, num):
        return np.linspace(start, stop, num)

    def meshgrid(self, a, b):
        return np.meshgrid(a, b)

    def diag(self, a, k=0):
        return np.diag(a, k)

    def unique(self, a):
        return np.unique(a)

    def logsumexp(self, a, axis=None):
        return special.logsumexp(a, axis=axis)

    def stack(self, arrays, axis=0):
        return np.stack(arrays, axis)

    def reshape(self, a, shape):
        return np.reshape(a, shape)

    def seed(self, seed=None):
        if seed is not None:
            self.rng_.seed(seed)

    def rand(self, *size, type_as=None):
        return self.rng_.rand(*size)

    def randn(self, *size, type_as=None):
        return self.rng_.randn(*size)

    def coo_matrix(self, data, rows, cols, shape=None, type_as=None):
        if type_as is None:
            return coo_matrix((data, (rows, cols)), shape=shape)
        else:
            return coo_matrix((data, (rows, cols)), shape=shape, dtype=type_as.dtype)

    def issparse(self, a):
        return issparse(a)

    def tocsr(self, a):
        if self.issparse(a):
            return a.tocsr()
        else:
            return csr_matrix(a)

    def eliminate_zeros(self, a, threshold=0.):
        if threshold > 0:
            if self.issparse(a):
                a.data[self.abs(a.data) <= threshold] = 0
            else:
                a[self.abs(a) <= threshold] = 0
        if self.issparse(a):
            a.eliminate_zeros()
        return a

    def todense(self, a):
        if self.issparse(a):
            return a.toarray()
        else:
            return a

    def where(self, condition, x=None, y=None):
        if x is None and y is None:
            return np.where(condition)
        else:
            return np.where(condition, x, y)

    def copy(self, a):
        return a.copy()

    def allclose(self, a, b, rtol=1e-05, atol=1e-08, equal_nan=False):
        return np.allclose(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan)

    def dtype_device(self, a):
        if hasattr(a, "dtype"):
            return a.dtype, "cpu"
        else:
            return type(a), "cpu"

    def assert_same_dtype_device(self, a, b):
        # numpy has implicit type conversion so we automatically validate the test
        pass

    def squeeze(self, a, axis=None):
        return np.squeeze(a, axis=axis)

    def bitsize(self, type_as):
        return type_as.itemsize * 8

    def device_type(self, type_as):
        return "CPU"

    def _bench(self, callable, *args, n_runs=1, warmup_runs=1):
        results = dict()
        for type_as in self.__type_list__:
            inputs = [self.from_numpy(arg, type_as=type_as) for arg in args]
            for _ in range(warmup_runs):
                callable(*inputs)
            t0 = time.perf_counter()
            for _ in range(n_runs):
                callable(*inputs)
            t1 = time.perf_counter()
            key = ("Numpy", self.device_type(type_as), self.bitsize(type_as))
            results[key] = (t1 - t0) / n_runs
        return results

    def solve(self, a, b):
        return np.linalg.solve(a, b)

    def trace(self, a):
        return np.trace(a)

    def inv(self, a):
        return scipy.linalg.inv(a)

    def sqrtm(self, a):
        return scipy.linalg.sqrtm(a)

    def kl_div(self, p, q, eps=1e-16):
        return np.sum(p * np.log(p / q + eps))

    def isfinite(self, a):
        return np.isfinite(a)

    def array_equal(self, a, b):
        return np.array_equal(a, b)

    def is_floating_point(self, a):
        return a.dtype.kind == "f"

    def tile(self, a, reps):
        return np.tile(a, reps)

    def floor(self, a):
        return np.floor(a)

    def prod(self, a, axis=0):
        return np.prod(a, axis=axis)

    def sort2(self, a, axis=-1):
        return self.sort(a, axis), self.argsort(a, axis)

    def qr(self, a):
        np_version = tuple([int(k) for k in np.__version__.split(".")])
        if np_version < (1, 22, 0):
            M, N = a.shape[-2], a.shape[-1]
            K = min(M, N)

            if len(a.shape) >= 3:
                n = a.shape[0]

                qs, rs = np.zeros((n, M, K)), np.zeros((n, K, N))

                for i in range(a.shape[0]):
                    qs[i], rs[i] = np.linalg.qr(a[i])

            else:
                return np.linalg.qr(a)

            return qs, rs
        return np.linalg.qr(a)

    def atan2(self, a, b):
        return np.arctan2(a, b)

    def transpose(self, a, axes=None):
        return np.transpose(a, axes)


class JaxBackend(Backend):
    """
    JAX implementation of the backend

    - `__name__` is "jax"
    - `__type__` is jax.numpy.ndarray
    """

    __name__ = 'jax'
    __type__ = jax_type
    __type_list__ = None

    rng_ = None

    def __init__(self):
        self.rng_ = jax.random.PRNGKey(42)

        self.__type_list__ = []
        # available_devices = jax.devices("cpu")
        available_devices = []
        if xla_bridge.get_backend().platform == "gpu":
            available_devices += jax.devices("gpu")
        for d in available_devices:
            self.__type_list__ += [
                jax.device_put(jnp.array(1, dtype=jnp.float32), d),
                jax.device_put(jnp.array(1, dtype=jnp.float64), d)
            ]

    def _to_numpy(self, a):
        return np.array(a)

    def _change_device(self, a, type_as):
        return jax.device_put(a, type_as.device_buffer.device())

    def _from_numpy(self, a, type_as=None):
        if isinstance(a, float):
            a = np.array(a)
        if type_as is None:
            return jnp.array(a)
        else:
            return self._change_device(jnp.array(a).astype(type_as.dtype), type_as)

    def set_gradients(self, val, inputs, grads):
        from jax.flatten_util import ravel_pytree
        val, = jax.lax.stop_gradient((val,))

        ravelled_inputs, _ = ravel_pytree(inputs)
        ravelled_grads, _ = ravel_pytree(grads)

        aux = jnp.sum(ravelled_inputs * ravelled_grads) / 2
        aux = aux - jax.lax.stop_gradient(aux)

        val, = jax.tree_map(lambda z: z + aux, (val,))
        return val

    def zeros(self, shape, type_as=None):
        if type_as is None:
            return jnp.zeros(shape)
        else:
            return self._change_device(jnp.zeros(shape, dtype=type_as.dtype), type_as)

    def ones(self, shape, type_as=None):
        if type_as is None:
            return jnp.ones(shape)
        else:
            return self._change_device(jnp.ones(shape, dtype=type_as.dtype), type_as)

    def arange(self, stop, start=0, step=1, type_as=None):
        return jnp.arange(start, stop, step)

    def full(self, shape, fill_value, type_as=None):
        if type_as is None:
            return jnp.full(shape, fill_value)
        else:
            return self._change_device(jnp.full(shape, fill_value, dtype=type_as.dtype), type_as)

    def eye(self, N, M=None, type_as=None):
        if type_as is None:
            return jnp.eye(N, M)
        else:
            return self._change_device(jnp.eye(N, M, dtype=type_as.dtype), type_as)

    def sum(self, a, axis=None, keepdims=False):
        return jnp.sum(a, axis, keepdims=keepdims)

    def cumsum(self, a, axis=None):
        return jnp.cumsum(a, axis)

    def max(self, a, axis=None, keepdims=False):
        return jnp.max(a, axis, keepdims=keepdims)

    def min(self, a, axis=None, keepdims=False):
        return jnp.min(a, axis, keepdims=keepdims)

    def maximum(self, a, b):
        return jnp.maximum(a, b)

    def minimum(self, a, b):
        return jnp.minimum(a, b)

    def dot(self, a, b):
        return jnp.dot(a, b)

    def abs(self, a):
        return jnp.abs(a)

    def exp(self, a):
        return jnp.exp(a)

    def log(self, a):
        return jnp.log(a)

    def sqrt(self, a):
        return jnp.sqrt(a)

    def power(self, a, exponents):
        return jnp.power(a, exponents)

    def norm(self, a):
        return jnp.sqrt(jnp.sum(jnp.square(a)))

    def any(self, a):
        return jnp.any(a)

    def isnan(self, a):
        return jnp.isnan(a)

    def isinf(self, a):
        return jnp.isinf(a)

    def einsum(self, subscripts, *operands):
        return jnp.einsum(subscripts, *operands)

    def sort(self, a, axis=-1):
        return jnp.sort(a, axis)

    def argsort(self, a, axis=-1):
        return jnp.argsort(a, axis)

    def searchsorted(self, a, v, side='left'):
        if a.ndim == 1:
            return jnp.searchsorted(a, v, side)
        else:
            # this is a not very efficient way to make jax numpy
            # searchsorted work on 2d arrays
            return jnp.array([jnp.searchsorted(a[i, :], v[i, :], side) for i in range(a.shape[0])])

    def flip(self, a, axis=None):
        return jnp.flip(a, axis)

    def outer(self, a, b):
        return jnp.outer(a, b)

    def clip(self, a, a_min, a_max):
        return jnp.clip(a, a_min, a_max)

    def repeat(self, a, repeats, axis=None):
        return jnp.repeat(a, repeats, axis)

    def take_along_axis(self, arr, indices, axis):
        return jnp.take_along_axis(arr, indices, axis)

    def concatenate(self, arrays, axis=0):
        return jnp.concatenate(arrays, axis)

    def zero_pad(self, a, pad_width, value=0):
        return jnp.pad(a, pad_width, constant_values=value)

    def argmax(self, a, axis=None):
        return jnp.argmax(a, axis=axis)

    def argmin(self, a, axis=None):
        return jnp.argmin(a, axis=axis)

    def mean(self, a, axis=None):
        return jnp.mean(a, axis=axis)

    def std(self, a, axis=None):
        return jnp.std(a, axis=axis)

    def linspace(self, start, stop, num):
        return jnp.linspace(start, stop, num)

    def meshgrid(self, a, b):
        return jnp.meshgrid(a, b)

    def diag(self, a, k=0):
        return jnp.diag(a, k)

    def unique(self, a):
        return jnp.unique(a)

    def logsumexp(self, a, axis=None):
        return jspecial.logsumexp(a, axis=axis)

    def stack(self, arrays, axis=0):
        return jnp.stack(arrays, axis)

    def reshape(self, a, shape):
        return jnp.reshape(a, shape)

    def seed(self, seed=None):
        if seed is not None:
            self.rng_ = jax.random.PRNGKey(seed)

    def rand(self, *size, type_as=None):
        self.rng_, subkey = jax.random.split(self.rng_)
        if type_as is not None:
            return jax.random.uniform(subkey, shape=size, dtype=type_as.dtype)
        else:
            return jax.random.uniform(subkey, shape=size)

    def randn(self, *size, type_as=None):
        self.rng_, subkey = jax.random.split(self.rng_)
        if type_as is not None:
            return jax.random.normal(subkey, shape=size, dtype=type_as.dtype)
        else:
            return jax.random.normal(subkey, shape=size)

    def coo_matrix(self, data, rows, cols, shape=None, type_as=None):
        # Currently, JAX does not support sparse matrices
        data = self.to_numpy(data)
        rows = self.to_numpy(rows)
        cols = self.to_numpy(cols)
        nx = NumpyBackend()
        coo_matrix = nx.coo_matrix(data, rows, cols, shape=shape, type_as=type_as)
        matrix = nx.todense(coo_matrix)
        return self.from_numpy(matrix)

    def issparse(self, a):
        # Currently, JAX does not support sparse matrices
        return False

    def tocsr(self, a):
        # Currently, JAX does not support sparse matrices
        return a

    def eliminate_zeros(self, a, threshold=0.):
        # Currently, JAX does not support sparse matrices
        if threshold > 0:
            return self.where(
                self.abs(a) <= threshold,
                self.zeros((1,), type_as=a),
                a
            )
        return a

    def todense(self, a):
        # Currently, JAX does not support sparse matrices
        return a

    def where(self, condition, x=None, y=None):
        if x is None and y is None:
            return jnp.where(condition)
        else:
            return jnp.where(condition, x, y)

    def copy(self, a):
        # No need to copy, JAX arrays are immutable
        return a

    def allclose(self, a, b, rtol=1e-05, atol=1e-08, equal_nan=False):
        return jnp.allclose(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan)

    def dtype_device(self, a):
        return a.dtype, a.device_buffer.device()

    def assert_same_dtype_device(self, a, b):
        a_dtype, a_device = self.dtype_device(a)
        b_dtype, b_device = self.dtype_device(b)

        assert a_dtype == b_dtype, "Dtype discrepancy"
        assert a_device == b_device, f"Device discrepancy. First input is on {str(a_device)}, whereas second input is on {str(b_device)}"

    def squeeze(self, a, axis=None):
        return jnp.squeeze(a, axis=axis)

    def bitsize(self, type_as):
        return type_as.dtype.itemsize * 8

    def device_type(self, type_as):
        return self.dtype_device(type_as)[1].platform.upper()

    def _bench(self, callable, *args, n_runs=1, warmup_runs=1):
        results = dict()

        for type_as in self.__type_list__:
            inputs = [self.from_numpy(arg, type_as=type_as) for arg in args]
            for _ in range(warmup_runs):
                a = callable(*inputs)
            a.block_until_ready()
            t0 = time.perf_counter()
            for _ in range(n_runs):
                a = callable(*inputs)
            a.block_until_ready()
            t1 = time.perf_counter()
            key = ("Jax", self.device_type(type_as), self.bitsize(type_as))
            results[key] = (t1 - t0) / n_runs
        return results

    def solve(self, a, b):
        return jnp.linalg.solve(a, b)

    def trace(self, a):
        return jnp.trace(a)

    def inv(self, a):
        return jnp.linalg.inv(a)

    def sqrtm(self, a):
        L, V = jnp.linalg.eigh(a)
        return (V * jnp.sqrt(L)[None, :]) @ V.T

    def kl_div(self, p, q, eps=1e-16):
        return jnp.sum(p * jnp.log(p / q + eps))

    def isfinite(self, a):
        return jnp.isfinite(a)

    def array_equal(self, a, b):
        return jnp.array_equal(a, b)

    def is_floating_point(self, a):
        return a.dtype.kind == "f"

    def tile(self, a, reps):
        return jnp.tile(a, reps)

    def floor(self, a):
        return jnp.floor(a)

    def prod(self, a, axis=0):
        return jnp.prod(a, axis=axis)

    def sort2(self, a, axis=-1):
        return self.sort(a, axis), self.argsort(a, axis)

    def qr(self, a):
        return jnp.linalg.qr(a)

    def atan2(self, a, b):
        return jnp.arctan2(a, b)

    def transpose(self, a, axes=None):
        return jnp.transpose(a, axes)


class TorchBackend(Backend):
    """
    PyTorch implementation of the backend

    - `__name__` is "torch"
    - `__type__` is torch.Tensor
    """

    __name__ = 'torch'
    __type__ = torch_type
    __type_list__ = None

    rng_ = None

    def __init__(self):

        self.rng_ = torch.Generator("cpu")
        self.rng_.seed()

        self.__type_list__ = [torch.tensor(1, dtype=torch.float32),
                              torch.tensor(1, dtype=torch.float64)]

        if torch.cuda.is_available():
            self.rng_cuda_ = torch.Generator("cuda")
            self.rng_cuda_.seed()
            self.__type_list__.append(torch.tensor(1, dtype=torch.float32, device='cuda'))
            self.__type_list__.append(torch.tensor(1, dtype=torch.float64, device='cuda'))
        else:
            self.rng_cuda_ = torch.Generator("cpu")

        from torch.autograd import Function

        # define a function that takes inputs val and grads
        # ad returns a val tensor with proper gradients
        class ValFunction(Function):

            @staticmethod
            def forward(ctx, val, grads, *inputs):
                ctx.grads = grads
                return val

            @staticmethod
            def backward(ctx, grad_output):
                # the gradients are grad
                return (None, None) + tuple(g * grad_output for g in ctx.grads)

        self.ValFunction = ValFunction

    def _to_numpy(self, a):
        return a.cpu().detach().numpy()

    def _from_numpy(self, a, type_as=None):
        if isinstance(a, float):
            a = np.array(a)
        if type_as is None:
            return torch.from_numpy(a)
        else:
            return torch.as_tensor(a, dtype=type_as.dtype, device=type_as.device)

    def set_gradients(self, val, inputs, grads):

        Func = self.ValFunction

        res = Func.apply(val, grads, *inputs)

        return res

    def zeros(self, shape, type_as=None):
        if isinstance(shape, int):
            shape = (shape,)
        if type_as is None:
            return torch.zeros(shape)
        else:
            return torch.zeros(shape, dtype=type_as.dtype, device=type_as.device)

    def ones(self, shape, type_as=None):
        if isinstance(shape, int):
            shape = (shape,)
        if type_as is None:
            return torch.ones(shape)
        else:
            return torch.ones(shape, dtype=type_as.dtype, device=type_as.device)

    def arange(self, stop, start=0, step=1, type_as=None):
        if type_as is None:
            return torch.arange(start, stop, step)
        else:
            return torch.arange(start, stop, step, device=type_as.device)

    def full(self, shape, fill_value, type_as=None):
        if isinstance(shape, int):
            shape = (shape,)
        if type_as is None:
            return torch.full(shape, fill_value)
        else:
            return torch.full(shape, fill_value, dtype=type_as.dtype, device=type_as.device)

    def eye(self, N, M=None, type_as=None):
        if M is None:
            M = N
        if type_as is None:
            return torch.eye(N, m=M)
        else:
            return torch.eye(N, m=M, dtype=type_as.dtype, device=type_as.device)

    def sum(self, a, axis=None, keepdims=False):
        if axis is None:
            return torch.sum(a)
        else:
            return torch.sum(a, axis, keepdim=keepdims)

    def cumsum(self, a, axis=None):
        if axis is None:
            return torch.cumsum(a.flatten(), 0)
        else:
            return torch.cumsum(a, axis)

    def max(self, a, axis=None, keepdims=False):
        if axis is None:
            return torch.max(a)
        else:
            return torch.max(a, axis, keepdim=keepdims)[0]

    def min(self, a, axis=None, keepdims=False):
        if axis is None:
            return torch.min(a)
        else:
            return torch.min(a, axis, keepdim=keepdims)[0]

    def maximum(self, a, b):
        if isinstance(a, int) or isinstance(a, float):
            a = torch.tensor([float(a)], dtype=b.dtype, device=b.device)
        if isinstance(b, int) or isinstance(b, float):
            b = torch.tensor([float(b)], dtype=a.dtype, device=a.device)
        if hasattr(torch, "maximum"):
            return torch.maximum(a, b)
        else:
            return torch.max(torch.stack(torch.broadcast_tensors(a, b)), axis=0)[0]

    def minimum(self, a, b):
        if isinstance(a, int) or isinstance(a, float):
            a = torch.tensor([float(a)], dtype=b.dtype, device=b.device)
        if isinstance(b, int) or isinstance(b, float):
            b = torch.tensor([float(b)], dtype=a.dtype, device=a.device)
        if hasattr(torch, "minimum"):
            return torch.minimum(a, b)
        else:
            return torch.min(torch.stack(torch.broadcast_tensors(a, b)), axis=0)[0]

    def dot(self, a, b):
        return torch.matmul(a, b)

    def abs(self, a):
        return torch.abs(a)

    def exp(self, a):
        return torch.exp(a)

    def log(self, a):
        return torch.log(a)

    def sqrt(self, a):
        return torch.sqrt(a)

    def power(self, a, exponents):
        return torch.pow(a, exponents)

    def norm(self, a):
        return torch.sqrt(torch.sum(torch.square(a)))

    def any(self, a):
        return torch.any(a)

    def isnan(self, a):
        return torch.isnan(a)

    def isinf(self, a):
        return torch.isinf(a)

    def einsum(self, subscripts, *operands):
        return torch.einsum(subscripts, *operands)

    def sort(self, a, axis=-1):
        sorted0, indices = torch.sort(a, dim=axis)
        return sorted0

    def argsort(self, a, axis=-1):
        sorted, indices = torch.sort(a, dim=axis)
        return indices

    def searchsorted(self, a, v, side='left'):
        right = (side != 'left')
        return torch.searchsorted(a, v, right=right)

    def flip(self, a, axis=None):
        if axis is None:
            return torch.flip(a, tuple(i for i in range(len(a.shape))))
        if isinstance(axis, int):
            return torch.flip(a, (axis,))
        else:
            return torch.flip(a, dims=axis)

    def outer(self, a, b):
        return torch.outer(a, b)

    def clip(self, a, a_min, a_max):
        return torch.clamp(a, a_min, a_max)

    def repeat(self, a, repeats, axis=None):
        return torch.repeat_interleave(a, repeats, dim=axis)

    def take_along_axis(self, arr, indices, axis):
        return torch.gather(arr, axis, indices)

    def concatenate(self, arrays, axis=0):
        return torch.cat(arrays, dim=axis)

    def zero_pad(self, a, pad_width, value=0):
        from torch.nn.functional import pad
        # pad_width is an array of ndim tuples indicating how many 0 before and after
        # we need to add. We first need to make it compliant with torch syntax, that
        # starts with the last dim, then second last, etc.
        how_pad = tuple(element for tupl in pad_width[::-1] for element in tupl)
        return pad(a, how_pad, value=value)

    def argmax(self, a, axis=None):
        return torch.argmax(a, dim=axis)

    def argmin(self, a, axis=None):
        return torch.argmin(a, dim=axis)

    def mean(self, a, axis=None):
        if axis is not None:
            return torch.mean(a, dim=axis)
        else:
            return torch.mean(a)

    def std(self, a, axis=None):
        if axis is not None:
            return torch.std(a, dim=axis, unbiased=False)
        else:
            return torch.std(a, unbiased=False)

    def linspace(self, start, stop, num):
        return torch.linspace(start, stop, num, dtype=torch.float64)

    def meshgrid(self, a, b):
        try:
            return torch.meshgrid(a, b, indexing="xy")
        except TypeError:
            X, Y = torch.meshgrid(a, b)
            return X.T, Y.T

    def diag(self, a, k=0):
        return torch.diag(a, diagonal=k)

    def unique(self, a):
        return torch.unique(a)

    def logsumexp(self, a, axis=None):
        if axis is not None:
            return torch.logsumexp(a, dim=axis)
        else:
            return torch.logsumexp(a, dim=tuple(range(len(a.shape))))

    def stack(self, arrays, axis=0):
        return torch.stack(arrays, dim=axis)

    def reshape(self, a, shape):
        return torch.reshape(a, shape)

    def seed(self, seed=None):
        if isinstance(seed, int):
            self.rng_.manual_seed(seed)
            self.rng_cuda_.manual_seed(seed)
        elif isinstance(seed, torch.Generator):
            if self.device_type(seed) == "GPU":
                self.rng_cuda_ = seed
            else:
                self.rng_ = seed
        else:
            raise ValueError("Non compatible seed : {}".format(seed))

    def rand(self, *size, type_as=None):
        if type_as is not None:
            generator = self.rng_cuda_ if self.device_type(type_as) == "GPU" else self.rng_
            return torch.rand(size=size, generator=generator, dtype=type_as.dtype, device=type_as.device)
        else:
            return torch.rand(size=size, generator=self.rng_)

    def randn(self, *size, type_as=None):
        if type_as is not None:
            generator = self.rng_cuda_ if self.device_type(type_as) == "GPU" else self.rng_
            return torch.randn(size=size, dtype=type_as.dtype, generator=generator, device=type_as.device)
        else:
            return torch.randn(size=size, generator=self.rng_)

    def coo_matrix(self, data, rows, cols, shape=None, type_as=None):
        if type_as is None:
            return torch.sparse_coo_tensor(torch.stack([rows, cols]), data, size=shape)
        else:
            return torch.sparse_coo_tensor(
                torch.stack([rows, cols]), data, size=shape,
                dtype=type_as.dtype, device=type_as.device
            )

    def issparse(self, a):
        return getattr(a, "is_sparse", False) or getattr(a, "is_sparse_csr", False)

    def tocsr(self, a):
        # Versions older than 1.9 do not support CSR tensors. PyTorch 1.9 and 1.10 offer a very limited support
        return self.todense(a)

    def eliminate_zeros(self, a, threshold=0.):
        if self.issparse(a):
            if threshold > 0:
                mask = self.abs(a) <= threshold
                mask = ~mask
                mask = mask.nonzero()
            else:
                mask = a._values().nonzero()
            nv = a._values().index_select(0, mask.view(-1))
            ni = a._indices().index_select(1, mask.view(-1))
            return self.coo_matrix(nv, ni[0], ni[1], shape=a.shape, type_as=a)
        else:
            if threshold > 0:
                a[self.abs(a) <= threshold] = 0
            return a

    def todense(self, a):
        if self.issparse(a):
            return a.to_dense()
        else:
            return a

    def where(self, condition, x=None, y=None):
        if x is None and y is None:
            return torch.where(condition)
        else:
            return torch.where(condition, x, y)

    def copy(self, a):
        return torch.clone(a)

    def allclose(self, a, b, rtol=1e-05, atol=1e-08, equal_nan=False):
        return torch.allclose(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan)

    def dtype_device(self, a):
        return a.dtype, a.device

    def assert_same_dtype_device(self, a, b):
        a_dtype, a_device = self.dtype_device(a)
        b_dtype, b_device = self.dtype_device(b)

        assert a_dtype == b_dtype, "Dtype discrepancy"
        assert a_device == b_device, f"Device discrepancy. First input is on {str(a_device)}, whereas second input is on {str(b_device)}"

    def squeeze(self, a, axis=None):
        if axis is None:
            return torch.squeeze(a)
        else:
            return torch.squeeze(a, dim=axis)

    def bitsize(self, type_as):
        return torch.finfo(type_as.dtype).bits

    def device_type(self, type_as):
        return type_as.device.type.replace("cuda", "gpu").upper()

    def _bench(self, callable, *args, n_runs=1, warmup_runs=1):
        results = dict()
        for type_as in self.__type_list__:
            inputs = [self.from_numpy(arg, type_as=type_as) for arg in args]
            for _ in range(warmup_runs):
                callable(*inputs)
            if self.device_type(type_as) == "GPU":  # pragma: no cover
                torch.cuda.synchronize()
                start = torch.cuda.Event(enable_timing=True)
                end = torch.cuda.Event(enable_timing=True)
                start.record()
            else:
                start = time.perf_counter()
            for _ in range(n_runs):
                callable(*inputs)
            if self.device_type(type_as) == "GPU":  # pragma: no cover
                end.record()
                torch.cuda.synchronize()
                duration = start.elapsed_time(end) / 1000.
            else:
                end = time.perf_counter()
                duration = end - start
            key = ("Pytorch", self.device_type(type_as), self.bitsize(type_as))
            results[key] = duration / n_runs
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        return results

    def solve(self, a, b):
        return torch.linalg.solve(a, b)

    def trace(self, a):
        return torch.trace(a)

    def inv(self, a):
        return torch.linalg.inv(a)

    def sqrtm(self, a):
        L, V = torch.linalg.eigh(a)
        return (V * torch.sqrt(L)[None, :]) @ V.T

    def kl_div(self, p, q, eps=1e-16):
        return torch.sum(p * torch.log(p / q + eps))

    def isfinite(self, a):
        return torch.isfinite(a)

    def array_equal(self, a, b):
        return torch.equal(a, b)

    def is_floating_point(self, a):
        return a.dtype.is_floating_point

    def tile(self, a, reps):
        return a.repeat(reps)

    def floor(self, a):
        return torch.floor(a)

    def prod(self, a, axis=0):
        return torch.prod(a, dim=axis)

    def sort2(self, a, axis=-1):
        return torch.sort(a, axis)

    def qr(self, a):
        return torch.linalg.qr(a)

    def atan2(self, a, b):
        return torch.atan2(a, b)

    def transpose(self, a, axes=None):
        if axes is None:
            axes = tuple(range(a.ndim)[::-1])
        return a.permute(axes)


class CupyBackend(Backend):  # pragma: no cover
    """
    CuPy implementation of the backend

    - `__name__` is "cupy"
    - `__type__` is cp.ndarray
    """

    __name__ = 'cupy'
    __type__ = cp_type
    __type_list__ = None

    rng_ = None

    def __init__(self):
        self.rng_ = cp.random.RandomState()

        self.__type_list__ = [
            cp.array(1, dtype=cp.float32),
            cp.array(1, dtype=cp.float64)
        ]

    def _to_numpy(self, a):
        return cp.asnumpy(a)

    def _from_numpy(self, a, type_as=None):
        if isinstance(a, float):
            a = np.array(a)
        if type_as is None:
            return cp.asarray(a)
        else:
            with cp.cuda.Device(type_as.device):
                return cp.asarray(a, dtype=type_as.dtype)

    def set_gradients(self, val, inputs, grads):
        # No gradients for cupy
        return val

    def zeros(self, shape, type_as=None):
        if isinstance(shape, (list, tuple)):
            shape = tuple(int(i) for i in shape)
        if type_as is None:
            return cp.zeros(shape)
        else:
            with cp.cuda.Device(type_as.device):
                return cp.zeros(shape, dtype=type_as.dtype)

    def ones(self, shape, type_as=None):
        if isinstance(shape, (list, tuple)):
            shape = tuple(int(i) for i in shape)
        if type_as is None:
            return cp.ones(shape)
        else:
            with cp.cuda.Device(type_as.device):
                return cp.ones(shape, dtype=type_as.dtype)

    def arange(self, stop, start=0, step=1, type_as=None):
        return cp.arange(start, stop, step)

    def full(self, shape, fill_value, type_as=None):
        if isinstance(shape, (list, tuple)):
            shape = tuple(int(i) for i in shape)
        if type_as is None:
            return cp.full(shape, fill_value)
        else:
            with cp.cuda.Device(type_as.device):
                return cp.full(shape, fill_value, dtype=type_as.dtype)

    def eye(self, N, M=None, type_as=None):
        if type_as is None:
            return cp.eye(N, M)
        else:
            with cp.cuda.Device(type_as.device):
                return cp.eye(N, M, dtype=type_as.dtype)

    def sum(self, a, axis=None, keepdims=False):
        return cp.sum(a, axis, keepdims=keepdims)

    def cumsum(self, a, axis=None):
        return cp.cumsum(a, axis)

    def max(self, a, axis=None, keepdims=False):
        return cp.max(a, axis, keepdims=keepdims)

    def min(self, a, axis=None, keepdims=False):
        return cp.min(a, axis, keepdims=keepdims)

    def maximum(self, a, b):
        return cp.maximum(a, b)

    def minimum(self, a, b):
        return cp.minimum(a, b)

    def abs(self, a):
        return cp.abs(a)

    def exp(self, a):
        return cp.exp(a)

    def log(self, a):
        return cp.log(a)

    def sqrt(self, a):
        return cp.sqrt(a)

    def power(self, a, exponents):
        return cp.power(a, exponents)

    def dot(self, a, b):
        return cp.dot(a, b)

    def norm(self, a):
        return cp.sqrt(cp.sum(cp.square(a)))

    def any(self, a):
        return cp.any(a)

    def isnan(self, a):
        return cp.isnan(a)

    def isinf(self, a):
        return cp.isinf(a)

    def einsum(self, subscripts, *operands):
        return cp.einsum(subscripts, *operands)

    def sort(self, a, axis=-1):
        return cp.sort(a, axis)

    def argsort(self, a, axis=-1):
        return cp.argsort(a, axis)

    def searchsorted(self, a, v, side='left'):
        if a.ndim == 1:
            return cp.searchsorted(a, v, side)
        else:
            # this is a not very efficient way to make numpy
            # searchsorted work on 2d arrays
            ret = cp.empty(v.shape, dtype=int)
            for i in range(a.shape[0]):
                ret[i, :] = cp.searchsorted(a[i, :], v[i, :], side)
            return ret

    def flip(self, a, axis=None):
        return cp.flip(a, axis)

    def outer(self, a, b):
        return cp.outer(a, b)

    def clip(self, a, a_min, a_max):
        return cp.clip(a, a_min, a_max)

    def repeat(self, a, repeats, axis=None):
        return cp.repeat(a, repeats, axis)

    def take_along_axis(self, arr, indices, axis):
        return cp.take_along_axis(arr, indices, axis)

    def concatenate(self, arrays, axis=0):
        return cp.concatenate(arrays, axis)

    def zero_pad(self, a, pad_width, value=0):
        return cp.pad(a, pad_width, constant_values=value)

    def argmax(self, a, axis=None):
        return cp.argmax(a, axis=axis)

    def argmin(self, a, axis=None):
        return cp.argmin(a, axis=axis)

    def mean(self, a, axis=None):
        return cp.mean(a, axis=axis)

    def std(self, a, axis=None):
        return cp.std(a, axis=axis)

    def linspace(self, start, stop, num):
        return cp.linspace(start, stop, num)

    def meshgrid(self, a, b):
        return cp.meshgrid(a, b)

    def diag(self, a, k=0):
        return cp.diag(a, k)

    def unique(self, a):
        return cp.unique(a)

    def logsumexp(self, a, axis=None):
        # Taken from
        # https://github.com/scipy/scipy/blob/v1.7.1/scipy/special/_logsumexp.py#L7-L127
        a_max = cp.amax(a, axis=axis, keepdims=True)

        if a_max.ndim > 0:
            a_max[~cp.isfinite(a_max)] = 0
        elif not cp.isfinite(a_max):
            a_max = 0

        tmp = cp.exp(a - a_max)
        s = cp.sum(tmp, axis=axis)
        out = cp.log(s)
        a_max = cp.squeeze(a_max, axis=axis)
        out += a_max
        return out

    def stack(self, arrays, axis=0):
        return cp.stack(arrays, axis)

    def reshape(self, a, shape):
        return cp.reshape(a, shape)

    def seed(self, seed=None):
        if seed is not None:
            self.rng_.seed(seed)

    def rand(self, *size, type_as=None):
        if type_as is None:
            return self.rng_.rand(*size)
        else:
            with cp.cuda.Device(type_as.device):
                return self.rng_.rand(*size, dtype=type_as.dtype)

    def randn(self, *size, type_as=None):
        if type_as is None:
            return self.rng_.randn(*size)
        else:
            with cp.cuda.Device(type_as.device):
                return self.rng_.randn(*size, dtype=type_as.dtype)

    def coo_matrix(self, data, rows, cols, shape=None, type_as=None):
        data = self.from_numpy(data)
        rows = self.from_numpy(rows)
        cols = self.from_numpy(cols)
        if type_as is None:
            return cupyx.scipy.sparse.coo_matrix(
                (data, (rows, cols)), shape=shape
            )
        else:
            with cp.cuda.Device(type_as.device):
                return cupyx.scipy.sparse.coo_matrix(
                    (data, (rows, cols)), shape=shape, dtype=type_as.dtype
                )

    def issparse(self, a):
        return cupyx.scipy.sparse.issparse(a)

    def tocsr(self, a):
        if self.issparse(a):
            return a.tocsr()
        else:
            return cupyx.scipy.sparse.csr_matrix(a)

    def eliminate_zeros(self, a, threshold=0.):
        if threshold > 0:
            if self.issparse(a):
                a.data[self.abs(a.data) <= threshold] = 0
            else:
                a[self.abs(a) <= threshold] = 0
        if self.issparse(a):
            a.eliminate_zeros()
        return a

    def todense(self, a):
        if self.issparse(a):
            return a.toarray()
        else:
            return a

    def where(self, condition, x=None, y=None):
        if x is None and y is None:
            return cp.where(condition)
        else:
            return cp.where(condition, x, y)

    def copy(self, a):
        return a.copy()

    def allclose(self, a, b, rtol=1e-05, atol=1e-08, equal_nan=False):
        return cp.allclose(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan)

    def dtype_device(self, a):
        return a.dtype, a.device

    def assert_same_dtype_device(self, a, b):
        a_dtype, a_device = self.dtype_device(a)
        b_dtype, b_device = self.dtype_device(b)

        # cupy has implicit type conversion so
        # we automatically validate the test for type
        assert a_device == b_device, f"Device discrepancy. First input is on {str(a_device)}, whereas second input is on {str(b_device)}"

    def squeeze(self, a, axis=None):
        return cp.squeeze(a, axis=axis)

    def bitsize(self, type_as):
        return type_as.itemsize * 8

    def device_type(self, type_as):
        return "GPU"

    def _bench(self, callable, *args, n_runs=1, warmup_runs=1):
        mempool = cp.get_default_memory_pool()
        pinned_mempool = cp.get_default_pinned_memory_pool()

        results = dict()
        for type_as in self.__type_list__:
            inputs = [self.from_numpy(arg, type_as=type_as) for arg in args]
            start_gpu = cp.cuda.Event()
            end_gpu = cp.cuda.Event()
            for _ in range(warmup_runs):
                callable(*inputs)
            start_gpu.synchronize()
            start_gpu.record()
            for _ in range(n_runs):
                callable(*inputs)
            end_gpu.record()
            end_gpu.synchronize()
            key = ("Cupy", self.device_type(type_as), self.bitsize(type_as))
            t_gpu = cp.cuda.get_elapsed_time(start_gpu, end_gpu) / 1000.
            results[key] = t_gpu / n_runs
        mempool.free_all_blocks()
        pinned_mempool.free_all_blocks()
        return results

    def solve(self, a, b):
        return cp.linalg.solve(a, b)

    def trace(self, a):
        return cp.trace(a)

    def inv(self, a):
        return cp.linalg.inv(a)

    def sqrtm(self, a):
        L, V = cp.linalg.eigh(a)
        return (V * self.sqrt(L)[None, :]) @ V.T

    def kl_div(self, p, q, eps=1e-16):
        return cp.sum(p * cp.log(p / q + eps))

    def isfinite(self, a):
        return cp.isfinite(a)

    def array_equal(self, a, b):
        return cp.array_equal(a, b)

    def is_floating_point(self, a):
        return a.dtype.kind == "f"

    def tile(self, a, reps):
        return cp.tile(a, reps)

    def floor(self, a):
        return cp.floor(a)

    def prod(self, a, axis=0):
        return cp.prod(a, axis=axis)

    def sort2(self, a, axis=-1):
        return self.sort(a, axis), self.argsort(a, axis)

    def qr(self, a):
        return cp.linalg.qr(a)

    def atan2(self, a, b):
        return cp.arctan2(a, b)

    def transpose(self, a, axes=None):
        return cp.transpose(a, axes)


class TensorflowBackend(Backend):

    __name__ = "tf"
    __type__ = tf_type
    __type_list__ = None

    rng_ = None

    def __init__(self):
        self.seed(None)

        self.__type_list__ = [
            tf.convert_to_tensor([1], dtype=tf.float32),
            tf.convert_to_tensor([1], dtype=tf.float64)
        ]

        tmp = self.randn(15, 10)
        try:
            tmp.reshape((150, 1))
        except AttributeError:
            warnings.warn(
                "To use TensorflowBackend, you need to activate the tensorflow "
                "numpy API. You can activate it by running: \n"
                "from tensorflow.python.ops.numpy_ops import np_config\n"
                "np_config.enable_numpy_behavior()",
                stacklevel=2
            )

    def _to_numpy(self, a):
        return a.numpy()

    def _from_numpy(self, a, type_as=None):
        if isinstance(a, float):
            a = np.array(a)
        if not isinstance(a, self.__type__):
            if type_as is None:
                return tf.convert_to_tensor(a)
            else:
                return tf.convert_to_tensor(a, dtype=type_as.dtype)
        else:
            if type_as is None:
                return a
            else:
                return tf.cast(a, dtype=type_as.dtype)

    def set_gradients(self, val, inputs, grads):
        @tf.custom_gradient
        def tmp(input):
            def grad(upstream):
                return grads
            return val, grad
        return tmp(inputs)

    def zeros(self, shape, type_as=None):
        if type_as is None:
            return tnp.zeros(shape)
        else:
            return tnp.zeros(shape, dtype=type_as.dtype)

    def ones(self, shape, type_as=None):
        if type_as is None:
            return tnp.ones(shape)
        else:
            return tnp.ones(shape, dtype=type_as.dtype)

    def arange(self, stop, start=0, step=1, type_as=None):
        return tnp.arange(start, stop, step)

    def full(self, shape, fill_value, type_as=None):
        if type_as is None:
            return tnp.full(shape, fill_value)
        else:
            return tnp.full(shape, fill_value, dtype=type_as.dtype)

    def eye(self, N, M=None, type_as=None):
        if type_as is None:
            return tnp.eye(N, M)
        else:
            return tnp.eye(N, M, dtype=type_as.dtype)

    def sum(self, a, axis=None, keepdims=False):
        return tnp.sum(a, axis, keepdims=keepdims)

    def cumsum(self, a, axis=None):
        return tnp.cumsum(a, axis)

    def max(self, a, axis=None, keepdims=False):
        return tnp.max(a, axis, keepdims=keepdims)

    def min(self, a, axis=None, keepdims=False):
        return tnp.min(a, axis, keepdims=keepdims)

    def maximum(self, a, b):
        return tnp.maximum(a, b)

    def minimum(self, a, b):
        return tnp.minimum(a, b)

    def dot(self, a, b):
        if len(b.shape) == 1:
            if len(a.shape) == 1:
                # inner product
                return tf.reduce_sum(tf.multiply(a, b))
            else:
                # matrix vector
                return tf.linalg.matvec(a, b)
        else:
            if len(a.shape) == 1:
                return tf.linalg.matvec(b.T, a.T).T
            else:
                return tf.matmul(a, b)

    def abs(self, a):
        return tnp.abs(a)

    def exp(self, a):
        return tnp.exp(a)

    def log(self, a):
        return tnp.log(a)

    def sqrt(self, a):
        return tnp.sqrt(a)

    def power(self, a, exponents):
        return tnp.power(a, exponents)

    def norm(self, a):
        return tf.math.reduce_euclidean_norm(a)

    def any(self, a):
        return tnp.any(a)

    def isnan(self, a):
        return tnp.isnan(a)

    def isinf(self, a):
        return tnp.isinf(a)

    def einsum(self, subscripts, *operands):
        return tnp.einsum(subscripts, *operands)

    def sort(self, a, axis=-1):
        return tnp.sort(a, axis)

    def argsort(self, a, axis=-1):
        return tnp.argsort(a, axis)

    def searchsorted(self, a, v, side='left'):
        return tf.searchsorted(a, v, side=side)

    def flip(self, a, axis=None):
        return tnp.flip(a, axis)

    def outer(self, a, b):
        return tnp.outer(a, b)

    def clip(self, a, a_min, a_max):
        return tnp.clip(a, a_min, a_max)

    def repeat(self, a, repeats, axis=None):
        return tnp.repeat(a, repeats, axis)

    def take_along_axis(self, arr, indices, axis):
        return tnp.take_along_axis(arr, indices, axis)

    def concatenate(self, arrays, axis=0):
        return tnp.concatenate(arrays, axis)

    def zero_pad(self, a, pad_width, value=0):
        return tnp.pad(a, pad_width, mode="constant", constant_values=value)

    def argmax(self, a, axis=None):
        return tnp.argmax(a, axis=axis)

    def argmin(self, a, axis=None):
        return tnp.argmin(a, axis=axis)

    def mean(self, a, axis=None):
        return tnp.mean(a, axis=axis)

    def std(self, a, axis=None):
        return tnp.std(a, axis=axis)

    def linspace(self, start, stop, num):
        return tnp.linspace(start, stop, num)

    def meshgrid(self, a, b):
        return tnp.meshgrid(a, b)

    def diag(self, a, k=0):
        return tnp.diag(a, k)

    def unique(self, a):
        return tf.sort(tf.unique(tf.reshape(a, [-1]))[0])

    def logsumexp(self, a, axis=None):
        return tf.math.reduce_logsumexp(a, axis=axis)

    def stack(self, arrays, axis=0):
        return tnp.stack(arrays, axis)

    def reshape(self, a, shape):
        return tnp.reshape(a, shape)

    def seed(self, seed=None):
        if isinstance(seed, int):
            self.rng_ = tf.random.Generator.from_seed(seed)
        elif isinstance(seed, tf.random.Generator):
            self.rng_ = seed
        elif seed is None:
            self.rng_ = tf.random.Generator.from_non_deterministic_state()
        else:
            raise ValueError("Non compatible seed : {}".format(seed))

    def rand(self, *size, type_as=None):
        if type_as is None:
            return self.rng_.uniform(size, minval=0., maxval=1.)
        else:
            return self.rng_.uniform(
                size, minval=0., maxval=1., dtype=type_as.dtype
            )

    def randn(self, *size, type_as=None):
        if type_as is None:
            return self.rng_.normal(size)
        else:
            return self.rng_.normal(size, dtype=type_as.dtype)

    def _convert_to_index_for_coo(self, tensor):
        if isinstance(tensor, self.__type__):
            return int(self.max(tensor)) + 1
        else:
            return int(np.max(tensor)) + 1

    def coo_matrix(self, data, rows, cols, shape=None, type_as=None):
        if shape is None:
            shape = (
                self._convert_to_index_for_coo(rows),
                self._convert_to_index_for_coo(cols)
            )
        if type_as is not None:
            data = self.from_numpy(data, type_as=type_as)

        sparse_tensor = tf.sparse.SparseTensor(
            indices=tnp.stack([rows, cols]).T,
            values=data,
            dense_shape=shape
        )
        # if type_as is not None:
        #     sparse_tensor = self.from_numpy(sparse_tensor, type_as=type_as)
        # SparseTensor are not subscriptable so we use dense tensors
        return self.todense(sparse_tensor)

    def issparse(self, a):
        return isinstance(a, tf.sparse.SparseTensor)

    def tocsr(self, a):
        return a

    def eliminate_zeros(self, a, threshold=0.):
        if self.issparse(a):
            values = a.values
            if threshold > 0:
                mask = self.abs(values) <= threshold
            else:
                mask = values == 0
            return tf.sparse.retain(a, ~mask)
        else:
            if threshold > 0:
                a = tnp.where(self.abs(a) > threshold, a, 0.)
            return a

    def todense(self, a):
        if self.issparse(a):
            return tf.sparse.to_dense(tf.sparse.reorder(a))
        else:
            return a

    def where(self, condition, x=None, y=None):
        if x is None and y is None:
            return tnp.where(condition)
        else:
            return tnp.where(condition, x, y)

    def copy(self, a):
        return tf.identity(a)

    def allclose(self, a, b, rtol=1e-05, atol=1e-08, equal_nan=False):
        return tnp.allclose(
            a, b, rtol=rtol, atol=atol, equal_nan=equal_nan
        )

    def dtype_device(self, a):
        return a.dtype, a.device.split("device:")[1]

    def assert_same_dtype_device(self, a, b):
        a_dtype, a_device = self.dtype_device(a)
        b_dtype, b_device = self.dtype_device(b)

        assert a_dtype == b_dtype, "Dtype discrepancy"
        assert a_device == b_device, f"Device discrepancy. First input is on {str(a_device)}, whereas second input is on {str(b_device)}"

    def squeeze(self, a, axis=None):
        return tnp.squeeze(a, axis=axis)

    def bitsize(self, type_as):
        return type_as.dtype.size * 8

    def device_type(self, type_as):
        return self.dtype_device(type_as)[1].split(":")[0]

    def _bench(self, callable, *args, n_runs=1, warmup_runs=1):
        results = dict()
        device_contexts = [tf.device("/CPU:0")]
        if len(tf.config.list_physical_devices('GPU')) > 0:  # pragma: no cover
            device_contexts.append(tf.device("/GPU:0"))

        for device_context in device_contexts:
            with device_context:
                for type_as in self.__type_list__:
                    inputs = [self.from_numpy(arg, type_as=type_as) for arg in args]
                    for _ in range(warmup_runs):
                        callable(*inputs)
                    t0 = time.perf_counter()
                    for _ in range(n_runs):
                        res = callable(*inputs)
                    _ = res.numpy()
                    t1 = time.perf_counter()
                    key = (
                        "Tensorflow",
                        self.device_type(inputs[0]),
                        self.bitsize(type_as)
                    )
                    results[key] = (t1 - t0) / n_runs

        return results

    def solve(self, a, b):
        return tf.linalg.solve(a, b)

    def trace(self, a):
        return tf.linalg.trace(a)

    def inv(self, a):
        return tf.linalg.inv(a)

    def sqrtm(self, a):
        return tf.linalg.sqrtm(a)

    def kl_div(self, p, q, eps=1e-16):
        return tnp.sum(p * tnp.log(p / q + eps))

    def isfinite(self, a):
        return tnp.isfinite(a)

    def array_equal(self, a, b):
        return tnp.array_equal(a, b)

    def is_floating_point(self, a):
        return a.dtype.is_floating

    def tile(self, a, reps):
        return tnp.tile(a, reps)

    def floor(self, a):
        return tf.floor(a)

    def prod(self, a, axis=0):
        return tnp.prod(a, axis=axis)

    def sort2(self, a, axis=-1):
        return self.sort(a, axis), self.argsort(a, axis)

    def qr(self, a):
        return tf.linalg.qr(a)

    def atan2(self, a, b):
        return tf.math.atan2(a, b)

    def transpose(self, a, axes=None):
        return tf.transpose(a, perm=axes)