summaryrefslogtreecommitdiff
path: root/ot/bregman.py
blob: b6cdf80c823c4c63bbb12472223086fca15ad3da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# -*- coding: utf-8 -*-
"""
Bregman projections for regularized OT
"""

import numpy as np


def sinkhorn(a,b, M, reg,numItermax = 1000,stopThr=1e-9,verbose=False,log=False):
    """
    Solve the entropic regularization optimal transport problem and return the OT matrix
    
    The function solves the following optimization problem:
    
    .. math::
        \gamma = arg\min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma)
        
        s.t. \gamma 1 = a
        
             \gamma^T 1= b 
             
             \gamma\geq 0
    where :
    
    - M is the (ns,nt) metric cost matrix
    - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
    - a and b are source and target weights (sum to 1)
    
    The algorithm used for solving the problem is the Sinkhorn-Knopp matrix scaling algorithm as proposed in [2]_
    
             
    Parameters
    ----------
    a : np.ndarray (ns,)
        samples weights in the source domain
    b : np.ndarray (nt,)
        samples in the target domain
    M : np.ndarray (ns,nt)
        loss matrix        
    reg: float
        Regularization term >0
    numItermax: int, optional
        Max number of iterations
    stopThr: float, optional
        Stop threshol on error (>0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        record log if True    
  
    
    Returns
    -------
    gamma: (ns x nt) ndarray
        Optimal transportation matrix for the given parameters
    log: dict
        log dictionary return only if log==True in parameters         

    Examples
    --------
        
    >>> a=[.5,.5]
    >>> b=[.5,.5]
    >>> M=[[0.,1.],[1.,0.]]
    >>> ot.sinkhorn(a,b,M,1)
    array([[ 0.36552929,  0.13447071],
           [ 0.13447071,  0.36552929]])
      
        
    References
    ----------
    
    .. [2] M. Cuturi, Sinkhorn Distances : Lightspeed Computation of Optimal Transport, Advances in Neural Information Processing Systems (NIPS) 26, 2013
        
        
    See Also
    --------
    ot.lp.emd : Unregularized OT
    ot.optim.cg : General regularized OT
        
    """    
    
    a=np.asarray(a,dtype=np.float64)
    b=np.asarray(b,dtype=np.float64)
    M=np.asarray(M,dtype=np.float64)
    
    if len(a)==0:
        a=np.ones((M.shape[0],),dtype=np.float64)/M.shape[0]
    if len(b)==0:
        b=np.ones((M.shape[1],),dtype=np.float64)/M.shape[1]    
    
    # init data
    Nini = len(a)
    Nfin = len(b)
    
    
    cpt = 0
    if log:
        log={'err':[]}
    
    # we assume that no distances are null except those of the diagonal of distances
    u = np.ones(Nini)/Nini
    v = np.ones(Nfin)/Nfin 
    uprev=np.zeros(Nini)
    vprev=np.zeros(Nini)

    #print reg
 
    K = np.exp(-M/reg)
    #print np.min(K)
      
    Kp = np.dot(np.diag(1/a),K)
    transp = K
    cpt = 0
    err=1
    while (err>stopThr and cpt<numItermax):
        if np.any(np.dot(K.T,u)==0) or np.any(np.isnan(u)) or np.any(np.isnan(v)):
            # we have reached the machine precision
            # come back to previous solution and quit loop
            print('Warning: numerical errrors')
            if cpt!=0:
                u = uprev
                v = vprev     
            break
        uprev = u
        vprev = v  
        v = np.divide(b,np.dot(K.T,u))
        u = 1./np.dot(Kp,v)
        if cpt%10==0:
            # we can speed up the process by checking for the error only all the 10th iterations
            transp = np.dot(np.diag(u),np.dot(K,np.diag(v)))
            err = np.linalg.norm((np.sum(transp,axis=0)-b))**2
            if log:
                log['err'].append(err)        
        
            if verbose:
                if cpt%200 ==0:
                    print('{:5s}|{:12s}'.format('It.','Err')+'\n'+'-'*19)
                print('{:5d}|{:8e}|'.format(cpt,err))
        cpt = cpt +1
    #print 'err=',err,' cpt=',cpt  
    if log:
        return np.dot(np.diag(u),np.dot(K,np.diag(v))),log
    else:
        return np.dot(np.diag(u),np.dot(K,np.diag(v)))


def geometricBar(weights,alldistribT):
    """return the weighted geometric mean of distributions"""
    assert(len(weights)==alldistribT.shape[1])       
    return np.exp(np.dot(np.log(alldistribT),weights.T))    

def geometricMean(alldistribT):     
    """return the  geometric mean of distributions"""
    return np.exp(np.mean(np.log(alldistribT),axis=1))    

def projR(gamma,p):
    #return np.dot(np.diag(p/np.maximum(np.sum(gamma,axis=1),1e-10)),gamma)
    return np.multiply(gamma.T,p/np.maximum(np.sum(gamma,axis=1),1e-10)).T

def projC(gamma,q):
    #return (np.dot(np.diag(q/np.maximum(np.sum(gamma,axis=0),1e-10)),gamma.T)).T
    return np.multiply(gamma,q/np.maximum(np.sum(gamma,axis=0),1e-10))
    

def barycenter(A,M,reg, weights=None, numItermax = 1000, stopThr=1e-4,verbose=False,log=False):
    """Compute the entropic regularized wasserstein barycenter of distributions A

     The function solves the following optimization problem:
    
    .. math::
       \mathbf{a} = arg\min_\mathbf{a} \sum_i W_{reg}(\mathbf{a},\mathbf{a}_i)
        
    where :
    
    - :math:`W_{reg}(\cdot,\cdot)` is the entropic regularized Wasserstein distance (see ot.bregman.sinkhorn)
    - :math:`\mathbf{a}_i` are training distributions in the columns of matrix :math:`\mathbf{A}`
    - reg and :math:`\mathbf{M}` are respectively the regularization term and the cost matrix for OT
    
    The algorithm used for solving the problem is the Sinkhorn-Knopp matrix scaling algorithm as proposed in [3]_
        
    Parameters
    ----------
    A : np.ndarray (d,n)
        n training distributions of size d 
    M : np.ndarray (ns,nt)
        loss matrix   for OT      
    reg: float
        Regularization term >0
    numItermax: int, optional
        Max number of iterations
    stopThr: float, optional
        Stop threshol on error (>0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        record log if True    
  
    
    Returns
    -------
    a: (d,) ndarray
        Wasserstein barycenter
    log: dict
        log dictionary return only if log==True in parameters     

        
    References
    ----------
    
    .. [3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G. (2015). Iterative Bregman projections for regularized transportation problems. SIAM Journal on Scientific Computing, 37(2), A1111-A1138.
  
        
          
    """
    
    
    if weights is None:
        weights=np.ones(A.shape[1])/A.shape[1]
    else:
        assert(len(weights)==A.shape[1])
        
    if log:
        log={'err':[]}

    #M = M/np.median(M) # suggested by G. Peyre
    K = np.exp(-M/reg)

    cpt = 0
    err=1

    UKv=np.dot(K,np.divide(A.T,np.sum(K,axis=0)).T)
    u = (geometricMean(UKv)/UKv.T).T
    
    while (err>stopThr and cpt<numItermax):
        cpt = cpt +1
        UKv=u*np.dot(K,np.divide(A,np.dot(K,u)))
        u = (u.T*geometricBar(weights,UKv)).T/UKv
        
        if cpt%10==1:
            err=np.sum(np.std(UKv,axis=1))
            
            # log and verbose print
            if log:
                log['err'].append(err)
            
            if verbose:
                if cpt%200 ==0:
                    print('{:5s}|{:12s}'.format('It.','Err')+'\n'+'-'*19)
                print('{:5d}|{:8e}|'.format(cpt,err))            

    if log:
        log['niter']=cpt
        return geometricBar(weights,UKv),log
    else:
        return geometricBar(weights,UKv)
    

def unmix(distrib,D,M,M0,h0,reg,reg0,alpha,numItermax = 1000, tol_error=1e-3,log=dict()):
    """
        distrib : distribution to unmix
        D : Dictionnary 
        M : Metric matrix in the space of the distributions to unmix
        M0 : Metric matrix in the space of the 'abundance values' to solve for
        h0 : prior on solution (generally uniform distribution)
        reg,reg0 : transport regularizations
        alpha : how much should we trust the prior ? ([0,1])
    """
        
    #M = M/np.median(M) 
    K = np.exp(-M/reg)
 
    #M0 = M0/np.median(M0)  
    K0 = np.exp(-M0/reg0)
    old = h0

    err=1
    cpt=0    
    #log = {'niter':0, 'all_err':[]}
    log['niter']=0
    log['all_err']=[]
    
    
    while (err>tol_error and cpt<numItermax):
        K = projC(K,distrib)  
        K0 = projC(K0,h0)  
        new  = np.sum(K0,axis=1)
        inv_new = np.dot(D,new) # we recombine the current selection from dictionnary
        other = np.sum(K,axis=1)
        delta = np.exp(alpha*np.log(other)+(1-alpha)*np.log(inv_new)) # geometric interpolation
        K = projR(K,delta)
        K0 =  np.dot(np.diag(np.dot(D.T,delta/inv_new)),K0)
        
        err=np.linalg.norm(np.sum(K0,axis=1)-old)
        old = new
        log['all_err'].append(err)
        cpt = cpt+1
        
        
    log['niter']=cpt
    return np.sum(K0,axis=1),log