summaryrefslogtreecommitdiff
path: root/ot/bregman.py
blob: f844f0394ec2a10780ba1b365f98055ece979d59 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
# -*- coding: utf-8 -*-
"""
Bregman projections for regularized OT
"""

# Author: Remi Flamary <remi.flamary@unice.fr>
#         Nicolas Courty <ncourty@irisa.fr>
#
# License: MIT License

import numpy as np


def sinkhorn(a, b, M, reg, method='sinkhorn', numItermax=1000,
             stopThr=1e-9, verbose=False, log=False, **kwargs):
    u"""
    Solve the entropic regularization optimal transport problem and return the OT matrix

    The function solves the following optimization problem:

    .. math::
        \gamma = arg\min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma)

        s.t. \gamma 1 = a

             \gamma^T 1= b

             \gamma\geq 0
    where :

    - M is the (ns,nt) metric cost matrix
    - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
    - a and b are source and target weights (sum to 1)

    The algorithm used for solving the problem is the Sinkhorn-Knopp matrix scaling algorithm as proposed in [2]_


    Parameters
    ----------
    a : np.ndarray (ns,)
        samples weights in the source domain
    b : np.ndarray (nt,) or np.ndarray (nt,nbb)
        samples in the target domain, compute sinkhorn with multiple targets
        and fixed M if b is a matrix (return OT loss + dual variables in log)
    M : np.ndarray (ns,nt)
        loss matrix
    reg : float
        Regularization term >0
    method : str
        method used for the solver either 'sinkhorn',  'sinkhorn_stabilized' or
        'sinkhorn_epsilon_scaling', see those function for specific parameters
    numItermax : int, optional
        Max number of iterations
    stopThr : float, optional
        Stop threshol on error (>0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        record log if True


    Returns
    -------
    gamma : (ns x nt) ndarray
        Optimal transportation matrix for the given parameters
    log : dict
        log dictionary return only if log==True in parameters

    Examples
    --------

    >>> import ot
    >>> a=[.5,.5]
    >>> b=[.5,.5]
    >>> M=[[0.,1.],[1.,0.]]
    >>> ot.sinkhorn(a,b,M,1)
    array([[ 0.36552929,  0.13447071],
           [ 0.13447071,  0.36552929]])


    References
    ----------

    .. [2] M. Cuturi, Sinkhorn Distances : Lightspeed Computation of Optimal Transport, Advances in Neural Information Processing Systems (NIPS) 26, 2013

    .. [9] Schmitzer, B. (2016). Stabilized Sparse Scaling Algorithms for Entropy Regularized Transport Problems. arXiv preprint arXiv:1610.06519.

    .. [10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). Scaling algorithms for unbalanced transport problems. arXiv preprint arXiv:1607.05816.



    See Also
    --------
    ot.lp.emd : Unregularized OT
    ot.optim.cg : General regularized OT
    ot.bregman.sinkhorn_knopp : Classic Sinkhorn [2]
    ot.bregman.sinkhorn_stabilized: Stabilized sinkhorn [9][10]
    ot.bregman.sinkhorn_epsilon_scaling: Sinkhorn with epslilon scaling [9][10]

    """

    if method.lower() == 'sinkhorn':
        def sink():
            return sinkhorn_knopp(a, b, M, reg, numItermax=numItermax,
                                  stopThr=stopThr, verbose=verbose, log=log, **kwargs)
    elif method.lower() == 'sinkhorn_stabilized':
        def sink():
            return sinkhorn_stabilized(a, b, M, reg, numItermax=numItermax,
                                       stopThr=stopThr, verbose=verbose, log=log, **kwargs)
    elif method.lower() == 'sinkhorn_epsilon_scaling':
        def sink():
            return sinkhorn_epsilon_scaling(
                a, b, M, reg, numItermax=numItermax,
                stopThr=stopThr, verbose=verbose, log=log, **kwargs)
    else:
        print('Warning : unknown method using classic Sinkhorn Knopp')

        def sink():
            return sinkhorn_knopp(a, b, M, reg, **kwargs)

    return sink()


def sinkhorn2(a, b, M, reg, method='sinkhorn', numItermax=1000,
              stopThr=1e-9, verbose=False, log=False, **kwargs):
    u"""
    Solve the entropic regularization optimal transport problem and return the loss

    The function solves the following optimization problem:

    .. math::
        W = \min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma)

        s.t. \gamma 1 = a

             \gamma^T 1= b

             \gamma\geq 0
    where :

    - M is the (ns,nt) metric cost matrix
    - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
    - a and b are source and target weights (sum to 1)

    The algorithm used for solving the problem is the Sinkhorn-Knopp matrix scaling algorithm as proposed in [2]_


    Parameters
    ----------
    a : np.ndarray (ns,)
        samples weights in the source domain
    b : np.ndarray (nt,) or np.ndarray (nt,nbb)
        samples in the target domain, compute sinkhorn with multiple targets
        and fixed M if b is a matrix (return OT loss + dual variables in log)
    M : np.ndarray (ns,nt)
        loss matrix
    reg : float
        Regularization term >0
    method : str
        method used for the solver either 'sinkhorn',  'sinkhorn_stabilized' or
        'sinkhorn_epsilon_scaling', see those function for specific parameters
    numItermax : int, optional
        Max number of iterations
    stopThr : float, optional
        Stop threshol on error (>0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        record log if True


    Returns
    -------
    W : (nt) ndarray or float
        Optimal transportation matrix for the given parameters
    log : dict
        log dictionary return only if log==True in parameters

    Examples
    --------

    >>> import ot
    >>> a=[.5,.5]
    >>> b=[.5,.5]
    >>> M=[[0.,1.],[1.,0.]]
    >>> ot.sinkhorn2(a,b,M,1)
    array([ 0.26894142])



    References
    ----------

    .. [2] M. Cuturi, Sinkhorn Distances : Lightspeed Computation of Optimal Transport, Advances in Neural Information Processing Systems (NIPS) 26, 2013

    .. [9] Schmitzer, B. (2016). Stabilized Sparse Scaling Algorithms for Entropy Regularized Transport Problems. arXiv preprint arXiv:1610.06519.

    .. [10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). Scaling algorithms for unbalanced transport problems. arXiv preprint arXiv:1607.05816.



    See Also
    --------
    ot.lp.emd : Unregularized OT
    ot.optim.cg : General regularized OT
    ot.bregman.sinkhorn_knopp : Classic Sinkhorn [2]
    ot.bregman.sinkhorn_stabilized: Stabilized sinkhorn [9][10]
    ot.bregman.sinkhorn_epsilon_scaling: Sinkhorn with epslilon scaling [9][10]

    """

    if method.lower() == 'sinkhorn':
        def sink():
            return sinkhorn_knopp(a, b, M, reg, numItermax=numItermax,
                                  stopThr=stopThr, verbose=verbose, log=log, **kwargs)
    elif method.lower() == 'sinkhorn_stabilized':
        def sink():
            return sinkhorn_stabilized(a, b, M, reg, numItermax=numItermax,
                                       stopThr=stopThr, verbose=verbose, log=log, **kwargs)
    elif method.lower() == 'sinkhorn_epsilon_scaling':
        def sink():
            return sinkhorn_epsilon_scaling(
                a, b, M, reg, numItermax=numItermax,
                stopThr=stopThr, verbose=verbose, log=log, **kwargs)
    else:
        print('Warning : unknown method using classic Sinkhorn Knopp')

        def sink():
            return sinkhorn_knopp(a, b, M, reg, **kwargs)

    b = np.asarray(b, dtype=np.float64)
    if len(b.shape) < 2:
        b = b.reshape((-1, 1))

    return sink()


def sinkhorn_knopp(a, b, M, reg, numItermax=1000,
                   stopThr=1e-9, verbose=False, log=False, **kwargs):
    """
    Solve the entropic regularization optimal transport problem and return the OT matrix

    The function solves the following optimization problem:

    .. math::
        \gamma = arg\min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma)

        s.t. \gamma 1 = a

             \gamma^T 1= b

             \gamma\geq 0
    where :

    - M is the (ns,nt) metric cost matrix
    - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
    - a and b are source and target weights (sum to 1)

    The algorithm used for solving the problem is the Sinkhorn-Knopp matrix scaling algorithm as proposed in [2]_


    Parameters
    ----------
    a : np.ndarray (ns,)
        samples weights in the source domain
    b : np.ndarray (nt,) or np.ndarray (nt,nbb)
        samples in the target domain, compute sinkhorn with multiple targets
        and fixed M if b is a matrix (return OT loss + dual variables in log)
    M : np.ndarray (ns,nt)
        loss matrix
    reg : float
        Regularization term >0
    numItermax : int, optional
        Max number of iterations
    stopThr : float, optional
        Stop threshol on error (>0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        record log if True


    Returns
    -------
    gamma : (ns x nt) ndarray
        Optimal transportation matrix for the given parameters
    log : dict
        log dictionary return only if log==True in parameters

    Examples
    --------

    >>> import ot
    >>> a=[.5,.5]
    >>> b=[.5,.5]
    >>> M=[[0.,1.],[1.,0.]]
    >>> ot.sinkhorn(a,b,M,1)
    array([[ 0.36552929,  0.13447071],
           [ 0.13447071,  0.36552929]])


    References
    ----------

    .. [2] M. Cuturi, Sinkhorn Distances : Lightspeed Computation of Optimal Transport, Advances in Neural Information Processing Systems (NIPS) 26, 2013


    See Also
    --------
    ot.lp.emd : Unregularized OT
    ot.optim.cg : General regularized OT

    """

    a = np.asarray(a, dtype=np.float64)
    b = np.asarray(b, dtype=np.float64)
    M = np.asarray(M, dtype=np.float64)

    if len(a) == 0:
        a = np.ones((M.shape[0],), dtype=np.float64) / M.shape[0]
    if len(b) == 0:
        b = np.ones((M.shape[1],), dtype=np.float64) / M.shape[1]

    # init data
    Nini = len(a)
    Nfin = len(b)

    if len(b.shape) > 1:
        nbb = b.shape[1]
    else:
        nbb = 0

    if log:
        log = {'err': []}

    # we assume that no distances are null except those of the diagonal of
    # distances
    if nbb:
        u = np.ones((Nini, nbb)) / Nini
        v = np.ones((Nfin, nbb)) / Nfin
    else:
        u = np.ones(Nini) / Nini
        v = np.ones(Nfin) / Nfin

    # print(reg)

    # Next 3 lines equivalent to K= np.exp(-M/reg), but faster to compute
    K = np.empty(M.shape, dtype=M.dtype)
    np.divide(M, -reg, out=K)
    np.exp(K, out=K)

    # print(np.min(K))
    tmp2 = np.empty(b.shape, dtype=M.dtype)

    Kp = (1 / a).reshape(-1, 1) * K
    cpt = 0
    err = 1
    while (err > stopThr and cpt < numItermax):
        uprev = u
        vprev = v

        KtransposeU = np.dot(K.T, u)
        v = np.divide(b, KtransposeU)
        u = 1. / np.dot(Kp, v)

        if (np.any(KtransposeU == 0) or
                np.any(np.isnan(u)) or np.any(np.isnan(v)) or
                np.any(np.isinf(u)) or np.any(np.isinf(v))):
            # we have reached the machine precision
            # come back to previous solution and quit loop
            print('Warning: numerical errors at iteration', cpt)
            u = uprev
            v = vprev
            break
        if cpt % 10 == 0:
            # we can speed up the process by checking for the error only all
            # the 10th iterations
            if nbb:
                err = np.sum((u - uprev)**2) / np.sum((u)**2) + \
                    np.sum((v - vprev)**2) / np.sum((v)**2)
            else:
                # compute right marginal tmp2= (diag(u)Kdiag(v))^T1
                np.einsum('i,ij,j->j', u, K, v, out=tmp2)
                err = np.linalg.norm(tmp2 - b)**2  # violation of marginal
            if log:
                log['err'].append(err)

            if verbose:
                if cpt % 200 == 0:
                    print(
                        '{:5s}|{:12s}'.format('It.', 'Err') + '\n' + '-' * 19)
                print('{:5d}|{:8e}|'.format(cpt, err))
        cpt = cpt + 1
    if log:
        log['u'] = u
        log['v'] = v

    if nbb:  # return only loss
        res = np.einsum('ik,ij,jk,ij->k', u, K, v, M)
        if log:
            return res, log
        else:
            return res

    else:  # return OT matrix

        if log:
            return u.reshape((-1, 1)) * K * v.reshape((1, -1)), log
        else:
            return u.reshape((-1, 1)) * K * v.reshape((1, -1))


def sinkhorn_stabilized(a, b, M, reg, numItermax=1000, tau=1e3, stopThr=1e-9,
                        warmstart=None, verbose=False, print_period=20, log=False, **kwargs):
    """
    Solve the entropic regularization OT problem with log stabilization

    The function solves the following optimization problem:

    .. math::
        \gamma = arg\min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma)

        s.t. \gamma 1 = a

             \gamma^T 1= b

             \gamma\geq 0
    where :

    - M is the (ns,nt) metric cost matrix
    - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
    - a and b are source and target weights (sum to 1)

    The algorithm used for solving the problem is the Sinkhorn-Knopp matrix
    scaling algorithm as proposed in [2]_ but with the log stabilization
    proposed in [10]_ an defined in [9]_ (Algo 3.1) .


    Parameters
    ----------
    a : np.ndarray (ns,)
        samples weights in the source domain
    b : np.ndarray (nt,)
        samples in the target domain
    M : np.ndarray (ns,nt)
        loss matrix
    reg : float
        Regularization term >0
    tau : float
        thershold for max value in u or v for log scaling
    warmstart : tible of vectors
        if given then sarting values for alpha an beta log scalings
    numItermax : int, optional
        Max number of iterations
    stopThr : float, optional
        Stop threshol on error (>0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        record log if True


    Returns
    -------
    gamma : (ns x nt) ndarray
        Optimal transportation matrix for the given parameters
    log : dict
        log dictionary return only if log==True in parameters

    Examples
    --------

    >>> import ot
    >>> a=[.5,.5]
    >>> b=[.5,.5]
    >>> M=[[0.,1.],[1.,0.]]
    >>> ot.bregman.sinkhorn_stabilized(a,b,M,1)
    array([[ 0.36552929,  0.13447071],
           [ 0.13447071,  0.36552929]])


    References
    ----------

    .. [2] M. Cuturi, Sinkhorn Distances : Lightspeed Computation of Optimal Transport, Advances in Neural Information Processing Systems (NIPS) 26, 2013

    .. [9] Schmitzer, B. (2016). Stabilized Sparse Scaling Algorithms for Entropy Regularized Transport Problems. arXiv preprint arXiv:1610.06519.

    .. [10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). Scaling algorithms for unbalanced transport problems. arXiv preprint arXiv:1607.05816.


    See Also
    --------
    ot.lp.emd : Unregularized OT
    ot.optim.cg : General regularized OT

    """

    a = np.asarray(a, dtype=np.float64)
    b = np.asarray(b, dtype=np.float64)
    M = np.asarray(M, dtype=np.float64)

    if len(a) == 0:
        a = np.ones((M.shape[0],), dtype=np.float64) / M.shape[0]
    if len(b) == 0:
        b = np.ones((M.shape[1],), dtype=np.float64) / M.shape[1]

    # test if multiple target
    if len(b.shape) > 1:
        nbb = b.shape[1]
        a = a[:, np.newaxis]
    else:
        nbb = 0

    # init data
    na = len(a)
    nb = len(b)

    cpt = 0
    if log:
        log = {'err': []}

    # we assume that no distances are null except those of the diagonal of
    # distances
    if warmstart is None:
        alpha, beta = np.zeros(na), np.zeros(nb)
    else:
        alpha, beta = warmstart

    if nbb:
        u, v = np.ones((na, nbb)) / na, np.ones((nb, nbb)) / nb
    else:
        u, v = np.ones(na) / na, np.ones(nb) / nb

    def get_K(alpha, beta):
        """log space computation"""
        return np.exp(-(M - alpha.reshape((na, 1)) -
                        beta.reshape((1, nb))) / reg)

    def get_Gamma(alpha, beta, u, v):
        """log space gamma computation"""
        return np.exp(-(M - alpha.reshape((na, 1)) - beta.reshape((1, nb))) /
                      reg + np.log(u.reshape((na, 1))) + np.log(v.reshape((1, nb))))

    # print(np.min(K))

    K = get_K(alpha, beta)
    transp = K
    loop = 1
    cpt = 0
    err = 1
    while loop:

        uprev = u
        vprev = v

        # sinkhorn update
        v = b / (np.dot(K.T, u) + 1e-16)
        u = a / (np.dot(K, v) + 1e-16)

        # remove numerical problems and store them in K
        if np.abs(u).max() > tau or np.abs(v).max() > tau:
            if nbb:
                alpha, beta = alpha + reg * \
                    np.max(np.log(u), 1), beta + reg * np.max(np.log(v))
            else:
                alpha, beta = alpha + reg * np.log(u), beta + reg * np.log(v)
                if nbb:
                    u, v = np.ones((na, nbb)) / na, np.ones((nb, nbb)) / nb
                else:
                    u, v = np.ones(na) / na, np.ones(nb) / nb
            K = get_K(alpha, beta)

        if cpt % print_period == 0:
            # we can speed up the process by checking for the error only all
            # the 10th iterations
            if nbb:
                err = np.sum((u - uprev)**2) / np.sum((u)**2) + \
                    np.sum((v - vprev)**2) / np.sum((v)**2)
            else:
                transp = get_Gamma(alpha, beta, u, v)
                err = np.linalg.norm((np.sum(transp, axis=0) - b))**2
            if log:
                log['err'].append(err)

            if verbose:
                if cpt % (print_period * 20) == 0:
                    print(
                        '{:5s}|{:12s}'.format('It.', 'Err') + '\n' + '-' * 19)
                print('{:5d}|{:8e}|'.format(cpt, err))

        if err <= stopThr:
            loop = False

        if cpt >= numItermax:
            loop = False

        if np.any(np.isnan(u)) or np.any(np.isnan(v)):
            # we have reached the machine precision
            # come back to previous solution and quit loop
            print('Warning: numerical errors at iteration', cpt)
            u = uprev
            v = vprev
            break

        cpt = cpt + 1

    # print('err=',err,' cpt=',cpt)
    if log:
        log['logu'] = alpha / reg + np.log(u)
        log['logv'] = beta / reg + np.log(v)
        log['alpha'] = alpha + reg * np.log(u)
        log['beta'] = beta + reg * np.log(v)
        log['warmstart'] = (log['alpha'], log['beta'])
        if nbb:
            res = np.zeros((nbb))
            for i in range(nbb):
                res[i] = np.sum(get_Gamma(alpha, beta, u[:, i], v[:, i]) * M)
            return res, log

        else:
            return get_Gamma(alpha, beta, u, v), log
    else:
        if nbb:
            res = np.zeros((nbb))
            for i in range(nbb):
                res[i] = np.sum(get_Gamma(alpha, beta, u[:, i], v[:, i]) * M)
            return res
        else:
            return get_Gamma(alpha, beta, u, v)


def sinkhorn_epsilon_scaling(a, b, M, reg, numItermax=100, epsilon0=1e4, numInnerItermax=100,
                             tau=1e3, stopThr=1e-9, warmstart=None, verbose=False, print_period=10, log=False, **kwargs):
    """
    Solve the entropic regularization optimal transport problem with log
    stabilization and epsilon scaling.

    The function solves the following optimization problem:

    .. math::
        \gamma = arg\min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma)

        s.t. \gamma 1 = a

             \gamma^T 1= b

             \gamma\geq 0
    where :

    - M is the (ns,nt) metric cost matrix
    - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
    - a and b are source and target weights (sum to 1)

    The algorithm used for solving the problem is the Sinkhorn-Knopp matrix
    scaling algorithm as proposed in [2]_ but with the log stabilization
    proposed in [10]_ and the log scaling proposed in [9]_ algorithm 3.2


    Parameters
    ----------
    a : np.ndarray (ns,)
        samples weights in the source domain
    b : np.ndarray (nt,)
        samples in the target domain
    M : np.ndarray (ns,nt)
        loss matrix
    reg : float
        Regularization term >0
    tau : float
        thershold for max value in u or v for log scaling
    tau : float
        thershold for max value in u or v for log scaling
    warmstart : tible of vectors
        if given then sarting values for alpha an beta log scalings
    numItermax : int, optional
        Max number of iterations
    numInnerItermax : int, optional
        Max number of iterationsin the inner slog stabilized sinkhorn
    epsilon0 : int, optional
        first epsilon regularization value (then exponential decrease to reg)
    stopThr : float, optional
        Stop threshol on error (>0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        record log if True


    Returns
    -------
    gamma : (ns x nt) ndarray
        Optimal transportation matrix for the given parameters
    log : dict
        log dictionary return only if log==True in parameters

    Examples
    --------

    >>> import ot
    >>> a=[.5,.5]
    >>> b=[.5,.5]
    >>> M=[[0.,1.],[1.,0.]]
    >>> ot.bregman.sinkhorn_epsilon_scaling(a,b,M,1)
    array([[ 0.36552929,  0.13447071],
           [ 0.13447071,  0.36552929]])


    References
    ----------

    .. [2] M. Cuturi, Sinkhorn Distances : Lightspeed Computation of Optimal Transport, Advances in Neural Information Processing Systems (NIPS) 26, 2013

    .. [9] Schmitzer, B. (2016). Stabilized Sparse Scaling Algorithms for Entropy Regularized Transport Problems. arXiv preprint arXiv:1610.06519.

    See Also
    --------
    ot.lp.emd : Unregularized OT
    ot.optim.cg : General regularized OT

    """

    a = np.asarray(a, dtype=np.float64)
    b = np.asarray(b, dtype=np.float64)
    M = np.asarray(M, dtype=np.float64)

    if len(a) == 0:
        a = np.ones((M.shape[0],), dtype=np.float64) / M.shape[0]
    if len(b) == 0:
        b = np.ones((M.shape[1],), dtype=np.float64) / M.shape[1]

    # init data
    na = len(a)
    nb = len(b)

    # nrelative umerical precision with 64 bits
    numItermin = 35
    numItermax = max(numItermin, numItermax)  # ensure that last velue is exact

    cpt = 0
    if log:
        log = {'err': []}

    # we assume that no distances are null except those of the diagonal of
    # distances
    if warmstart is None:
        alpha, beta = np.zeros(na), np.zeros(nb)
    else:
        alpha, beta = warmstart

    def get_K(alpha, beta):
        """log space computation"""
        return np.exp(-(M - alpha.reshape((na, 1)) -
                        beta.reshape((1, nb))) / reg)

    # print(np.min(K))
    def get_reg(n):  # exponential decreasing
        return (epsilon0 - reg) * np.exp(-n) + reg

    loop = 1
    cpt = 0
    err = 1
    while loop:

        regi = get_reg(cpt)

        G, logi = sinkhorn_stabilized(a, b, M, regi, numItermax=numInnerItermax, stopThr=1e-9, warmstart=(
            alpha, beta), verbose=False, print_period=20, tau=tau, log=True)

        alpha = logi['alpha']
        beta = logi['beta']

        if cpt >= numItermax:
            loop = False

        if cpt % (print_period) == 0:  # spsion nearly converged
            # we can speed up the process by checking for the error only all
            # the 10th iterations
            transp = G
            err = np.linalg.norm(
                (np.sum(transp, axis=0) - b))**2 + np.linalg.norm((np.sum(transp, axis=1) - a))**2
            if log:
                log['err'].append(err)

            if verbose:
                if cpt % (print_period * 10) == 0:
                    print(
                        '{:5s}|{:12s}'.format('It.', 'Err') + '\n' + '-' * 19)
                print('{:5d}|{:8e}|'.format(cpt, err))

        if err <= stopThr and cpt > numItermin:
            loop = False

        cpt = cpt + 1
    # print('err=',err,' cpt=',cpt)
    if log:
        log['alpha'] = alpha
        log['beta'] = beta
        log['warmstart'] = (log['alpha'], log['beta'])
        return G, log
    else:
        return G


def geometricBar(weights, alldistribT):
    """return the weighted geometric mean of distributions"""
    assert(len(weights) == alldistribT.shape[1])
    return np.exp(np.dot(np.log(alldistribT), weights.T))


def geometricMean(alldistribT):
    """return the  geometric mean of distributions"""
    return np.exp(np.mean(np.log(alldistribT), axis=1))


def projR(gamma, p):
    """return the KL projection on the row constrints """
    return np.multiply(gamma.T, p / np.maximum(np.sum(gamma, axis=1), 1e-10)).T


def projC(gamma, q):
    """return the KL projection on the column constrints """
    return np.multiply(gamma, q / np.maximum(np.sum(gamma, axis=0), 1e-10))


def barycenter(A, M, reg, weights=None, numItermax=1000,
               stopThr=1e-4, verbose=False, log=False):
    """Compute the entropic regularized wasserstein barycenter of distributions A

     The function solves the following optimization problem:

    .. math::
       \mathbf{a} = arg\min_\mathbf{a} \sum_i W_{reg}(\mathbf{a},\mathbf{a}_i)

    where :

    - :math:`W_{reg}(\cdot,\cdot)` is the entropic regularized Wasserstein distance (see ot.bregman.sinkhorn)
    - :math:`\mathbf{a}_i` are training distributions in the columns of matrix :math:`\mathbf{A}`
    - reg and :math:`\mathbf{M}` are respectively the regularization term and the cost matrix for OT

    The algorithm used for solving the problem is the Sinkhorn-Knopp matrix scaling algorithm as proposed in [3]_

    Parameters
    ----------
    A : np.ndarray (d,n)
        n training distributions a_i of size d
    M : np.ndarray (d,d)
        loss matrix   for OT
    reg : float
        Regularization term >0
    weights : np.ndarray (n,)
        Weights of each histogram a_i on the simplex (barycentric coodinates)
    numItermax : int, optional
        Max number of iterations
    stopThr : float, optional
        Stop threshol on error (>0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        record log if True


    Returns
    -------
    a : (d,) ndarray
        Wasserstein barycenter
    log : dict
        log dictionary return only if log==True in parameters


    References
    ----------

    .. [3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G. (2015). Iterative Bregman projections for regularized transportation problems. SIAM Journal on Scientific Computing, 37(2), A1111-A1138.



    """

    if weights is None:
        weights = np.ones(A.shape[1]) / A.shape[1]
    else:
        assert(len(weights) == A.shape[1])

    if log:
        log = {'err': []}

    # M = M/np.median(M) # suggested by G. Peyre
    K = np.exp(-M / reg)

    cpt = 0
    err = 1

    UKv = np.dot(K, np.divide(A.T, np.sum(K, axis=0)).T)
    u = (geometricMean(UKv) / UKv.T).T

    while (err > stopThr and cpt < numItermax):
        cpt = cpt + 1
        UKv = u * np.dot(K, np.divide(A, np.dot(K, u)))
        u = (u.T * geometricBar(weights, UKv)).T / UKv

        if cpt % 10 == 1:
            err = np.sum(np.std(UKv, axis=1))

            # log and verbose print
            if log:
                log['err'].append(err)

            if verbose:
                if cpt % 200 == 0:
                    print(
                        '{:5s}|{:12s}'.format('It.', 'Err') + '\n' + '-' * 19)
                print('{:5d}|{:8e}|'.format(cpt, err))

    if log:
        log['niter'] = cpt
        return geometricBar(weights, UKv), log
    else:
        return geometricBar(weights, UKv)


def convolutional_barycenter2d(A, reg, weights=None, numItermax=10000, stopThr=1e-9, verbose=False, log=False):
    """Compute the entropic regularized wasserstein barycenter of distributions A
       where A is a collection of 2D images. 

     The function solves the following optimization problem:

    .. math::
       \mathbf{a} = arg\min_\mathbf{a} \sum_i W_{reg}(\mathbf{a},\mathbf{a}_i)

    where :

    - :math:`W_{reg}(\cdot,\cdot)` is the entropic regularized Wasserstein distance (see ot.bregman.sinkhorn)
    - :math:`\mathbf{a}_i` are training distributions (2D images) in the mast two dimensions of matrix :math:`\mathbf{A}`
    - reg is the regularization strength scalar value

    The algorithm used for solving the problem is the Sinkhorn-Knopp matrix scaling algorithm as proposed in [21]_

    Parameters
    ----------
    A : np.ndarray (n,w,h)
        n distributions (2D images) of size w x h
    reg : float
        Regularization term >0
    weights : np.ndarray (n,)
        Weights of each image on the simplex (barycentric coodinates)
    numItermax : int, optional
        Max number of iterations
    stopThr : float, optional
        Stop threshol on error (>0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        record log if True


    Returns
    -------
    a : (w,h) ndarray
        2D Wasserstein barycenter
    log : dict
        log dictionary return only if log==True in parameters


    References
    ----------

    .. [21] Solomon, J., De Goes, F., Peyré, G., Cuturi, M., Butscher, A., Nguyen, A. & Guibas, L. (2015). 
        Convolutional wasserstein distances: Efficient optimal transportation on geometric domains
        ACM Transactions on Graphics (TOG), 34(4), 66 


    """

    if weights is None:
        weights = np.ones(A.shape[0]) / A.shape[0]
    else:
        assert(len(weights) == A.shape[0])

    if log:
        log = {'err': []}

    b = np.zeros_like(A[0, :, :])
    U = np.ones_like(A)
    KV = np.ones_like(A)
    threshold = 1e-30  # in order to avoids numerical precision issues

    cpt = 0
    err = 1

    # build the convolution operator
    t = np.linspace(0, 1, A.shape[1])
    [Y, X] = np.meshgrid(t, t)
    xi1 = np.exp(-(X - Y)**2 / reg)

    def K(x): return np.dot(np.dot(xi1, x), xi1)

    while (err > stopThr and cpt < numItermax):

        bold = b
        cpt = cpt + 1

        b = np.zeros_like(A[0, :, :])
        for r in range(A.shape[0]):
            KV[r, :, :] = K(A[r, :, :] / np.maximum(threshold, K(U[r, :, :])))
            b += weights[r] * np.log(np.maximum(threshold, U[r, :, :] * KV[r, :, :]))
        b = np.exp(b)
        for r in range(A.shape[0]):
            U[r, :, :] = b / np.maximum(threshold, KV[r, :, :])

        if cpt % 10 == 1:
            err = np.sum(np.abs(bold - b))
            # log and verbose print
            if log:
                log['err'].append(err)

            if verbose:
                if cpt % 200 == 0:
                    print('{:5s}|{:12s}'.format('It.', 'Err') + '\n' + '-' * 19)
                print('{:5d}|{:8e}|'.format(cpt, err))

    if log:
        log['niter'] = cpt
        log['U'] = U
        return b, log
    else:
        return b


def unmix(a, D, M, M0, h0, reg, reg0, alpha, numItermax=1000,
          stopThr=1e-3, verbose=False, log=False):
    """
    Compute the unmixing of an observation with a given dictionary using Wasserstein distance

    The function solve the following optimization problem:

    .. math::
       \mathbf{h} = arg\min_\mathbf{h}  (1- \\alpha) W_{M,reg}(\mathbf{a},\mathbf{Dh})+\\alpha W_{M0,reg0}(\mathbf{h}_0,\mathbf{h})


    where :

    - :math:`W_{M,reg}(\cdot,\cdot)` is the entropic regularized Wasserstein distance with M loss matrix (see ot.bregman.sinkhorn)
    - :math:`\mathbf{a}` is an observed distribution,  :math:`\mathbf{h}_0` is aprior on unmixing
    - reg and :math:`\mathbf{M}` are respectively the regularization term and the cost matrix for OT data fitting
    - reg0 and :math:`\mathbf{M0}` are respectively the regularization term and the cost matrix for regularization
    - :math:`\\alpha`weight data fitting and regularization

    The optimization problem is solved suing the algorithm described in [4]


    Parameters
    ----------
    a : np.ndarray (d)
        observed distribution
    D : np.ndarray (d,n)
        dictionary matrix
    M : np.ndarray (d,d)
        loss matrix
    M0 : np.ndarray (n,n)
        loss matrix
    h0 : np.ndarray (n,)
        prior on h
    reg : float
        Regularization term >0 (Wasserstein data fitting)
    reg0 : float
        Regularization term >0 (Wasserstein reg with h0)
    alpha : float
        How much should we trust the prior ([0,1])
    numItermax : int, optional
        Max number of iterations
    stopThr : float, optional
        Stop threshol on error (>0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        record log if True


    Returns
    -------
    a : (d,) ndarray
        Wasserstein barycenter
    log : dict
        log dictionary return only if log==True in parameters

    References
    ----------

    .. [4] S. Nakhostin, N. Courty, R. Flamary, D. Tuia, T. Corpetti, Supervised planetary unmixing with optimal transport, Whorkshop on Hyperspectral Image and Signal Processing : Evolution in Remote Sensing (WHISPERS), 2016.

    """

    # M = M/np.median(M)
    K = np.exp(-M / reg)

    # M0 = M0/np.median(M0)
    K0 = np.exp(-M0 / reg0)
    old = h0

    err = 1
    cpt = 0
    # log = {'niter':0, 'all_err':[]}
    if log:
        log = {'err': []}

    while (err > stopThr and cpt < numItermax):
        K = projC(K, a)
        K0 = projC(K0, h0)
        new = np.sum(K0, axis=1)
        # we recombine the current selection from dictionnary
        inv_new = np.dot(D, new)
        other = np.sum(K, axis=1)
        # geometric interpolation
        delta = np.exp(alpha * np.log(other) + (1 - alpha) * np.log(inv_new))
        K = projR(K, delta)
        K0 = np.dot(np.diag(np.dot(D.T, delta / inv_new)), K0)

        err = np.linalg.norm(np.sum(K0, axis=1) - old)
        old = new
        if log:
            log['err'].append(err)

        if verbose:
            if cpt % 200 == 0:
                print('{:5s}|{:12s}'.format('It.', 'Err') + '\n' + '-' * 19)
            print('{:5d}|{:8e}|'.format(cpt, err))

        cpt = cpt + 1

    if log:
        log['niter'] = cpt
        return np.sum(K0, axis=1), log
    else:
        return np.sum(K0, axis=1)