summaryrefslogtreecommitdiff
path: root/ot/da.py
blob: 19d41bc9fd135fdc647c2e6f4a91e795120b713b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# -*- coding: utf-8 -*-
"""
Domain adaptation with optimal transport
"""

import numpy as np
from .bregman import sinkhorn
from .lp import emd
from .utils import unif,dist



def indices(a, func):
    return [i for (i, val) in enumerate(a) if func(val)]

def sinkhorn_lpl1_mm(a,labels_a, b, M, reg, eta=0.1,numItermax = 10,numInnerItermax = 200,stopInnerThr=1e-9,verbose=False,log=False):
    """
    Solve the entropic regularization optimal transport problem with nonconvex group lasso regularization
    
    The function solves the following optimization problem:
    
    .. math::
        \gamma = arg\min_\gamma <\gamma,M>_F + reg\cdot\Omega_e(\gamma)+ \eta \Omega_g(\gamma)
        
        s.t. \gamma 1 = a
        
             \gamma^T 1= b 
             
             \gamma\geq 0
    where :
    
    - M is the (ns,nt) metric cost matrix
    - :math:`\Omega_e` is the entropic regularization term :math:`\Omega_e(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
    - :math:`\Omega_g` is the group lasso  regulaization term :math:`\Omega_g(\gamma)=\sum_{i,c} \|\gamma_{i,\mathcal{I}_c}\|^{1/2}_1`   where  :math:`\mathcal{I}_c` are the index of samples from class c in the source domain.
    - a and b are source and target weights (sum to 1)
    
    The algorithm used for solving the problem is the generalised conditional gradient as proposed in  [5]_ [7]_
    
             
    Parameters
    ----------
    a : np.ndarray (ns,)
        samples weights in the source domain
    labels_a : np.ndarray (ns,)
        labels of samples in the source domain        
    b : np.ndarray (nt,)
        samples in the target domain
    M : np.ndarray (ns,nt)
        loss matrix        
    reg: float
        Regularization term for entropic regularization >0
    eta: float, optional
        Regularization term  for group lasso regularization >0        
    numItermax: int, optional
        Max number of iterations
    numInnerItermax: int, optional
        Max number of iterations (inner sinkhorn solver)
    stopInnerThr: float, optional
        Stop threshold on error (inner sinkhorn solver) (>0)        
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        record log if True    
  
    
    Returns
    -------
    gamma: (ns x nt) ndarray
        Optimal transportation matrix for the given parameters
    log: dict
        log dictionary return only if log==True in parameters         
      
        
    References
    ----------
    
    .. [5] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy, "Optimal Transport for Domain Adaptation," in IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PP, no.99, pp.1-1
    .. [7] Rakotomamonjy, A., Flamary, R., & Courty, N. (2015). Generalized conditional gradient: analysis of convergence and applications. arXiv preprint arXiv:1510.06567.
    
    See Also
    --------
    ot.lp.emd : Unregularized OT
    ot.bregman.sinkhorn : Entropic regularized OT
    ot.optim.cg : General regularized OT
        
    """    
    p=0.5
    epsilon = 1e-3

    # init data
    Nini = len(a)
    Nfin = len(b)
     
    indices_labels = []
    idx_begin = np.min(labels_a)
    for c in range(idx_begin,np.max(labels_a)+1):
        idxc = indices(labels_a, lambda x: x==c)
        indices_labels.append(idxc)

    W=np.zeros(M.shape)

    for cpt in range(numItermax):
        Mreg = M + eta*W
        transp=sinkhorn(a,b,Mreg,reg,numItermax=numInnerItermax, stopThr=stopInnerThr)
        # the transport has been computed. Check if classes are really separated
        W = np.ones((Nini,Nfin))
        for t in range(Nfin):
            column = transp[:,t]
            all_maj = []
            for c in range(idx_begin,np.max(labels_a)+1):
                col_c = column[indices_labels[c-idx_begin]]
                if c!=-1:
                    maj = p*((sum(col_c)+epsilon)**(p-1))
                    W[indices_labels[c-idx_begin],t]=maj
                    all_maj.append(maj)

            # now we majorize the unlabelled by the min of the majorizations
            # do it only for unlabbled data
            if idx_begin==-1:
                W[indices_labels[0],t]=np.min(all_maj)
    
    return transp



class OTDA():
    """Class for optimal transport with domain adaptation"""
    
    def __init__(self):
        self.xs=0
        self.xt=0
        self.G=0
        
    
    def fit(self,xs,xt,ws=None,wt=None):
        self.xs=xs
        self.xt=xt
        
        if wt is None:
            wt=unif(xt.shape[0])
        if ws is None:
            ws=unif(xs.shape[0])
            
        self.ws=ws
        self.wt=wt
            
        self.M=dist(xs,xt)
        self.G=emd(ws,wt,self.M)
        
    def interp(self,direction=1):
        """Barycentric interpolation for the source (1) or target (-1)"""
        
        if self.G and direction>0:
            return (self.G/self.ws).dot(self.xt) 
        elif self.G and direction<0:
            return (self.G.T/self.wt).dot(self.xs)