summaryrefslogtreecommitdiff
path: root/ot/dr.py
blob: 39651490f06861e006e823d283f4d815378f2793 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# -*- coding: utf-8 -*-
"""
Dimension reduction with optimal transport
"""

import autograd.numpy as np
from pymanopt.manifolds import Stiefel
from pymanopt import Problem
from pymanopt.solvers import SteepestDescent, TrustRegions

def dist(x1,x2):
    """ Compute squared euclidean distance between samples
    """
    x1p2=np.sum(np.square(x1),1)    
    x2p2=np.sum(np.square(x2),1)
    return x1p2.reshape((-1,1))+x2p2.reshape((1,-1))-2*np.dot(x1,x2.T)    

def sinkhorn(w1,w2,M,reg,k):
    """
    Simple solver for Sinkhorn algorithm with fixed number of iteration
    """
    K=np.exp(-M/reg)
    ui=np.ones((M.shape[0],))
    vi=np.ones((M.shape[1],))
    for i in range(k):
        vi=w2/(np.dot(K.T,ui))
        ui=w1/(np.dot(K,vi))
    G=ui.reshape((M.shape[0],1))*K*vi.reshape((1,M.shape[1]))   
    return G

def split_classes(X,y):
    """
    split samples in X by classes in y
    """
    lstsclass=np.unique(y)
    return [X[y==i,:].astype(np.float32) for i in lstsclass]
    


def wda(X,y,p=2,reg=1,k=10,solver = None,maxiter=100,verbose=0):
    """ 
    Wasserstein Discriminant Analysis [11]_
    
    The function solves the following optimization problem:

    .. math::
        P = \\text{arg}\min_P \\frac{\\sum_i W(PX^i,PX^i)}{\\sum_{i,j\\neq i} W(PX^i,PX^j)}

    where :
        
    - :math:`P` is a linear projection operator in the Stiefel(p,d) manifold
    - :math:`W` is entropic regularized Wasserstein distances
    - :math:`X^i` are samples in the dataset corresponding to class i    
    
    Parameters
    ----------
    a : np.ndarray (ns,)
        samples weights in the source domain
    b : np.ndarray (nt,)
        samples in the target domain
    M : np.ndarray (ns,nt)
        loss matrix
    reg : float
        Regularization term >0
    numItermax : int, optional
        Max number of iterations
    stopThr : float, optional
        Stop threshol on error (>0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        record log if True


    Returns
    -------
    gamma : (ns x nt) ndarray
        Optimal transportation matrix for the given parameters
    log : dict
        log dictionary return only if log==True in parameters

    Examples
    --------

    >>> import ot
    >>> a=[.5,.5]
    >>> b=[.5,.5]
    >>> M=[[0.,1.],[1.,0.]]
    >>> ot.sinkhorn(a,b,M,1)
    array([[ 0.36552929,  0.13447071],
           [ 0.13447071,  0.36552929]])


    References
    ----------

    .. [11] Flamary, R., Cuturi, M., Courty, N., & Rakotomamonjy, A. (2016). Wasserstein Discriminant Analysis. arXiv preprint arXiv:1608.08063.

    
    
    
    """
    
    mx=np.mean(X)
    X-=mx.reshape((1,-1))
    
    # data split between classes
    d=X.shape[1]
    xc=split_classes(X,y)
    # compute uniform weighs
    wc=[np.ones((x.shape[0]),dtype=np.float32)/x.shape[0] for x in xc]
        
    def cost(P):
        # wda loss
        loss_b=0
        loss_w=0
    
        for i,xi in enumerate(xc):
            xi=np.dot(xi,P)
            for j,xj in  enumerate(xc[i:]):
                xj=np.dot(xj,P)
                M=dist(xi,xj)
                G=sinkhorn(wc[i],wc[j+i],M,reg,k)
                if j==0:
                    loss_w+=np.sum(G*M)
                else:
                    loss_b+=np.sum(G*M)
                    
        # loss inversed because minimization            
        return loss_w/loss_b
    
    
    # declare manifold and problem
    manifold = Stiefel(d, p)    
    problem = Problem(manifold=manifold, cost=cost)
    
    # declare solver and solve
    if solver is None:
        solver= SteepestDescent(maxiter=maxiter,logverbosity=verbose)   
    elif solver in ['tr','TrustRegions']:
        solver= TrustRegions(maxiter=maxiter,logverbosity=verbose)
        
    Popt = solver.solve(problem)
    
    def proj(X):
        return (X-mx.reshape((1,-1))).dot(Popt)
    
    return Popt, proj