summaryrefslogtreecommitdiff
path: root/ot/gpu/cudamat/cudamat/cudamat.py
blob: f855ed23ec521e4b0988876c1a7fb33d14e1ccbe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
import os
import platform
import warnings
import sysconfig
import sys

import ctypes as ct
import numpy as np

def load_library(basename):
    if platform.system() == 'Windows':
       ext = '.dll'
    else:
       ext = sysconfig.get_config_var('SO')
    return ct.cdll.LoadLibrary(os.path.join(
        os.path.dirname(__file__) or os.path.curdir,
        basename + ext))

_cudamat = load_library('libcudamat')

_cudamat.get_last_cuda_error.restype = ct.c_char_p
_cudamat.get_last_clib_error.restype = ct.c_char_p
_cudamat.cublas_init.restype = ct.c_int
_cudamat.cublas_shutdown.restype = ct.c_int
_cudamat.cuda_set_device.restype = ct.c_int
_cudamat.init_random.restype = ct.c_int

_cudamat.init_empty.restype = ct.c_int
_cudamat.reshape.restype = ct.c_int
_cudamat.copy_to_host.restype = ct.c_int
_cudamat.allocate_device_memory = ct.c_int
_cudamat.copy_to_device.restype = ct.c_int
_cudamat.copy_on_device.restype = ct.c_int
_cudamat.free_device_memory.restype = ct.c_int

_cudamat.get_slice.restype = ct.c_int
_cudamat.get_row_slice.restype = ct.c_int
_cudamat.set_row_slice.restype = ct.c_int
_cudamat.copy_transpose.restype = ct.c_int
_cudamat.get_vector_slice.restype = ct.c_int
_cudamat.fill_with_rand.restype = ct.c_int
_cudamat.fill_with_randn.restype = ct.c_int

_cudamat.add_col_vec.restype = ct.c_int
_cudamat.add_col_mult.restype = ct.c_int
_cudamat.add_row_vec.restype = ct.c_int
_cudamat.mult_by_col_vec.restype = ct.c_int
_cudamat.mult_by_row_vec.restype = ct.c_int
_cudamat.divide_by_col_vec.restype = ct.c_int
_cudamat.divide_by_row_vec.restype = ct.c_int

_cudamat.less_than.restype = ct.c_int
_cudamat.less_than_scalar.restype = ct.c_int
_cudamat.greater_than.restype = ct.c_int
_cudamat.greater_than_scalar.restype = ct.c_int
_cudamat.equals.restype = ct.c_int
_cudamat.equals_scalar.restype = ct.c_int
_cudamat.minimum.restype = ct.c_int
_cudamat.minimum_scalar.restype = ct.c_int
_cudamat.maximum.restype = ct.c_int
_cudamat.maximum_scalar.restype = ct.c_int
_cudamat.min_by_axis.restype = ct.c_int
_cudamat.max_by_axis.restype = ct.c_int
_cudamat.argmin_by_axis.restype = ct.c_int
_cudamat.argmax_by_axis.restype = ct.c_int
_cudamat.sign.restype = ct.c_int
_cudamat.apply_sigmoid.restype = ct.c_int
_cudamat.apply_tanh.restype = ct.c_int
_cudamat.apply_soft_threshold.restype = ct.c_int
_cudamat.apply_abs.restype = ct.c_int
_cudamat.apply_log_1_plus_exp.restype = ct.c_int
_cudamat.apply_log.restype = ct.c_int
_cudamat.apply_exp.restype = ct.c_int
_cudamat.apply_gamma.restype = ct.c_int
_cudamat.apply_lgamma.restype = ct.c_int
_cudamat.apply_sqrt.restype = ct.c_int
_cudamat.apply_pow.restype = ct.c_int
_cudamat.apply_pow_matrix.restype = ct.c_int
_cudamat.reciprocal.restype = ct.c_int

_cudamat.add_elementwise.restype = ct.c_int
_cudamat.subtract_elementwise.restype = ct.c_int
_cudamat.divide_elementwise.restype = ct.c_int
_cudamat.mult_elementwise.restype = ct.c_int
_cudamat.assign_scalar.restype = ct.c_int
_cudamat.mult_by_scalar.restype = ct.c_int
_cudamat.divide_by_scalar.restype = ct.c_int
_cudamat.add_scalar.restype = ct.c_int

_cudamat.euclid_norm.restype = ct.c_double
_cudamat.manhattan_norm.restype = ct.c_double
_cudamat.selectRows.restype = ct.c_int
_cudamat.setSelectedRows.restype = ct.c_int
_cudamat.vdot.restype = ct.c_double
_cudamat.dot.restype = ct.c_int

_cudamat.where.restype = ct.c_int

_cudamat.correlate.restype = ct.c_int


def deprecated(func):
    """This is a decorator which can be used to mark functions
    as deprecated. It will result in a warning being emmitted
    when the function is used."""

    def newFunc(*args, **kwargs):
        warnings.warn("Call to deprecated function %s." % func.__name__,
                      category=DeprecationWarning)
        return func(*args, **kwargs)
    newFunc.__name__ = func.__name__
    newFunc.__doc__ = func.__doc__
    newFunc.__dict__.update(func.__dict__)
    return newFunc


class CUDAMatException(Exception):
    pass


def get_last_cuda_error():
    errmsg = _cudamat.get_last_cuda_error()
    if sys.version_info >= (3,):
        return bytes(errmsg).decode()
    else:
        return str(errmsg)


def get_last_clib_error():
    errmsg = _cudamat.get_last_clib_error()
    if sys.version_info >= (3,):
        return bytes(errmsg).decode()
    else:
        return str(errmsg)


def generate_exception(err_code, **kwargs):
    """
    Return a CUDAMatException object based on the error code err_code.
    Additional arguments are error-specific and optional.
    """

    if err_code == -1:
        return CUDAMatException("Incompatible matrix dimensions.")
    elif err_code == -2:
        return CUDAMatException("CUBLAS error.")
    elif err_code == -3:
        return CUDAMatException("CUDA error: " + get_last_cuda_error())
    elif err_code == -4:
        return CUDAMatException("Operation not supported on views.")
    elif err_code == -5:
        return CUDAMatException("Operation not supported on "
                                "transposed matrices.")
    elif err_code == -6:
        return CUDAMatException("")
    elif err_code == -7:
        return CUDAMatException("Incompatible transposedness.")
    elif err_code == -8:
        return CUDAMatException("Matrix is not in device memory.")
    elif err_code == -9:
        return CUDAMatException("Operation not supported.")
    elif err_code == -10:
        filepath = kwargs.get("filepath","");
        if filepath:
            filepath = ": '%s'" % filepath
        return CUDAMatException("Cannot open file%s: %s" % (filepath,get_last_clib_error()))
    elif err_code == -11:
        filepath = kwargs.get("filepath","");
        if filepath:
            filepath = ": '%s'" % filepath
        return CUDAMatException("Cannot parse file%s." % filepath)
    else:
        return CUDAMatException("")


class cudamat(ct.Structure):
    _fields_ = [('data_host', ct.POINTER(ct.c_double)),
                ('data_device', ct.POINTER(ct.c_double)),
                ('on_device', ct.c_int),
                ('on_host', ct.c_int),
                ('size', ct.c_int * 2),
                ('is_trans', ct.c_int),
                ('owns_data', ct.c_int)]


class rnd_struct(ct.Structure):
    _fields_ = [('dev_rnd_mults', ct.POINTER(ct.c_uint)),
                ('dev_rnd_words', ct.POINTER(ct.c_longlong))]


class TransposedCUDAMatrix(object):
    def __init__(self, mat):
        self.mat = cudamat()
        ct.memmove(ct.pointer(self.mat), ct.pointer(mat), ct.sizeof(self.mat))
        self.mat.is_trans = 1
        self.p_mat = ct.pointer(self.mat)


class CUDAMatrix(object):
    """
    A CUDAMatrix object represents a matrix of single precision floating point
    numbers on a GPU.
    """

    def __init__(self, array, copy_to_device=True, copy_on_host=True):
        """
        Initializes a new matrix object in one of two ways. If array is a numpy
        ndarray, memory for a matrix with the same dimensions is allocated on
        the GPU. If the copy_to_device flag is set to True, the GPU matrix is
        initialized with the given ndarray. If the copy_on_host flag is set to
        True, a copy of the matrix will be created in host memory even if the
        matrix is of the correct type (float64, Fortran-contiguous order).
        If array is not an ndarray, it must be a cudamat structure (typically
        the user will never use this way of calling __init__).
        """

        if type(array) in [np.ndarray, np.memmap]:
            # Convert array to float64 in FORTRAN order
            array = reformat(array, copy=copy_on_host)

            # Initialize as a ndarray-tied matrix.
            self.mat = cudamat()
            self.size = self.mat.size
            self.p_mat = ct.pointer(self.mat)
            self.numpy_array = array

            _cudamat.init_from_array(
                self.p_mat,
                array.ctypes.data_as(ct.POINTER(ct.c_double)),
                ct.c_int(array.shape[0]),
                ct.c_int(array.shape[1]))

            if copy_to_device:
                err_code = _cudamat.copy_to_device(self.p_mat)
                if err_code:
                    raise generate_exception(err_code)

        else:
            # Initialize based on existing cudamat structure.
            mat = array
            self.mat = mat
            self.p_mat = ct.pointer(self.mat)

        self.T = TransposedCUDAMatrix(self.mat)

        # Keep a reference to free device memory in case of a crash.
        self.__free_device_memory = _cudamat.free_device_memory

    def __del__(self):
        try:
            if 'p_mat' in self.__dict__:
                err_code = self.__free_device_memory(self.p_mat)
                if err_code:
                    raise generate_exception(err_code)
        except AttributeError:
            pass

    @staticmethod
    def init_random(seed=0):
        """
        Initialize and seed the random number generator.
        """

        CUDAMatrix.rndInitialized = 1
        CUDAMatrix.rnd_state = rnd_struct()
        CUDAMatrix.rnd_state_p = ct.pointer(CUDAMatrix.rnd_state)

        cudamat_path = os.path.join(os.path.abspath(os.path.dirname(__file__)),
                                    'rnd_multipliers_32bit.txt')

        if sys.version_info >= (3,):
            cudamat_path = cudamat_path.encode(sys.getfilesystemencoding())

        err_code = _cudamat.init_random(CUDAMatrix.rnd_state_p,
                                        ct.c_int(seed),
                                        cudamat_path)
        if err_code:
            if sys.version_info >= (3,):
                cudamat_path = cudamat_path.decode(sys.getfilesystemencoding())
            raise generate_exception(err_code, filepath=cudamat_path)

    @property
    def shape(self):
        return (self.mat.size[0], self.mat.size[1])

    def reshape(self, shape):
        """
        Reshapes self to have the given shape. The number of elements cannot
        change as this only changes how the contents are interpreted.
        """

        m = ct.c_uint(shape[0])
        n = ct.c_uint(shape[1])

        # Reshape the default matrix
        err_code = _cudamat.reshape(self.p_mat, m, n)
        if err_code:
            raise generate_exception(err_code)
        # Reshape the transposed matrix
        err_code = _cudamat.reshape(self.T.p_mat, m, n)
        if err_code:
            raise generate_exception(err_code)
        # Reshape the CPU matrix
        if self.mat.on_host:
            self.numpy_array = np.reshape(self.numpy_array, shape, order='F')

        return self

    def asarray(self):
        """
        Copies the matrix to an ndarray on the CPU and returns it.
        """

        self.copy_to_host()

        return self.numpy_array

    def copy_to_device(self):
        """
        Copy the matrix to the GPU.
        """

        err_code = _cudamat.copy_to_device(self.p_mat)
        if err_code:
            raise generate_exception(err_code)

    def copy_to_host(self):
        """
        Copy the matrix to the CPU.
        """

        if not self.mat.on_host:
            # allocate host storage if necessary
            m = self.mat.size[0]
            n = self.mat.size[1]

            self.numpy_array = np.empty((m, n), dtype=np.float64, order='F')
            self.mat.data_host = \
                self.numpy_array.ctypes.data_as(ct.POINTER(ct.c_double))

            self.mat.on_host = 1

        err_code = _cudamat.copy_to_host(self.p_mat)
        if err_code:
            raise generate_exception(err_code)

    def copy(self, include_host=False):
        """
        Create a copy of the matrix on GPU. If include_host is True, also
        creates a copy of the matrix on CPU if there was any.
        """

        new_mat = empty(self.shape).assign(self)

        if include_host and self.mat.on_host:
            new_mat.numpy_array = self.numpy_array.copy()
            new_mat.mat.data_host = \
                new_mat.numpy_array.ctypes.data_as(ct.POINTER(ct.c_double))
            new_mat.mat.on_host = 1

        return new_mat

    def assign(self, val):
        """Assign val to self, where val can be a scalar or a CUDAMatrix
        with the same dimensions as self. """

        if isinstance(val, CUDAMatrix):
            err_code = _cudamat.copy_on_device(val.p_mat, self.p_mat)
        elif isinstance(val, (int, float)):
            err_code = _cudamat.assign_scalar(self.p_mat, ct.c_double(val))
        else:
            raise ValueError("Assigned value must be of type"
                             "CUDAMatrix, int, or float.")

        if err_code:
            raise generate_exception(err_code)

        return self

    def free_device_memory(self):
        """
        Free memory used up by the matrix on the GPU.
        """

        err_code = _cudamat.free_device_memory(self.p_mat)
        if err_code:
            raise generate_exception(err_code)

    def set_trans(self, is_trans):
        """
        Set the transposedness flag to is_trans.
        """

        _cudamat.set_transpose(self.p_mat, ct.c_int(1 * is_trans))

    def slice(self, first_col, last_col, include_host=False):
        """
        Creates a view into a consecutive range of columns of an existing
        matrix on GPU. If include_host is set to True, also creates a view
        into the CPU copy of the matrix (i.e., the numpy_array).
        """
        mat = cudamat()

        if self.mat.size[0] == 1 or self.mat.size[1] == 1:
            err_code = _cudamat.get_vector_slice(self.p_mat,
                                                 ct.pointer(mat),
                                                 ct.c_int(first_col),
                                                 ct.c_int(last_col))
        else:
            err_code = _cudamat.get_slice(self.p_mat,
                                          ct.pointer(mat),
                                          ct.c_int(first_col),
                                          ct.c_int(last_col))

        if err_code:
            raise generate_exception(err_code)

        new_mat = CUDAMatrix(mat)

        try:
            new_mat.sliceof = self.sliceof
        except:
            new_mat.sliceof = self

        # reproduce the slice on the host as well (if requested)
        if include_host and self.mat.on_host:
            new_mat.numpy_array = self.numpy_array[:, first_col:last_col]
            new_mat.mat.data_host = \
                new_mat.numpy_array.ctypes.data_as(ct.POINTER(ct.c_double))
            new_mat.mat.on_host = 1

        return new_mat

    def get_col_slice(self, first_col, last_col, target=None):
        """
        Get the columns with indices first_col through last_col. If a target
        is provided, columns are copied into the target. Otherwise, returns a
        view into the existing memory on GPU.
        """
        col_slice = self.slice(first_col, last_col)

        if target:
            target.assign(col_slice)
            return target
        else:
            return col_slice

    def set_col_slice(self, first_col, last_col, mat):
        """
        Assign the contents of mat to the columns with indices first_col
        through last_col.
        """
        self.slice(first_col, last_col).assign(mat)

        return self

    def get_row_slice(self, start, end, target=None):
        """
        Get the rows with indices start through end. If target is not provided
        memory for a new matrix will be allocated.
        """

        width = self.shape[1]

        if not target:
            target = empty((end-start, width))

        err_code = _cudamat.get_row_slice(self.p_mat,
                                          target.p_mat,
                                          ct.c_int(start),
                                          ct.c_int(end))
        if err_code:
            raise generate_exception(err_code)

        return target

    def set_row_slice(self, start, end, mat):
        """
        Assign the contents of mat to the rows with indices start through end.
        """

        err_code = _cudamat.set_row_slice(mat.p_mat, self.p_mat,
                                          ct.c_int(start), ct.c_int(end))
        if err_code:
            raise generate_exception(err_code)

        return self

    def transpose(self, target=None):
        """
        Return a transposed copy of the matrix.
        """
        if not target:
            target = empty((self.shape[1], self.shape[0]))

        err_code = _cudamat.copy_transpose(self.p_mat, target.p_mat)
        if err_code:
            raise generate_exception(err_code)

        return target

    def fill_with_rand(self):
        """
        Fill matrix on the GPU with random numbers drawn from the uniform
        distribution over the (0,1) interval.
        """

        err_code = _cudamat.fill_with_rand(CUDAMatrix.rnd_state_p, self.p_mat)
        if err_code:
            raise generate_exception(err_code)

        return self

    def fill_with_randn(self):
        """
        Fill matrix on the GPU with random numbers drawn from
        the standard normal distribution.
        """

        err_code = _cudamat.fill_with_randn(CUDAMatrix.rnd_state_p, self.p_mat)
        if err_code:
            raise generate_exception(err_code)

        return self

    def add_col_vec(self, vec, target=None):
        """
        Add vector vec to every column of the matrix. If a target is provided,
        it is used to store the result instead of self.
        """

        if not target:
            target = self

        err_code = _cudamat.add_col_vec(self.p_mat, vec.p_mat, target.p_mat)
        if err_code:
            raise generate_exception(err_code)

        return target

    def add_col_mult(self, vec, mult, target=None):
        """
        Add a multiple of vector vec to every column of the matrix. If a target
        is provided, it is used to store the result instead of self.
        """

        if not target:
            target = self

        err_code = _cudamat.add_col_mult(self.p_mat, vec.p_mat,
                                         target.p_mat, ct.c_double(mult))
        if err_code:
            raise generate_exception(err_code)

        return target

    def add_row_vec(self, vec, target=None):
        """
        Add vector vec to every row of the matrix. If a target is provided,
        it is used to store the result instead of self.
        """

        if not target:
            target = self

        err_code = _cudamat.add_row_vec(self.p_mat, vec.p_mat, target.p_mat)
        if err_code:
            raise generate_exception(err_code)

        return target

    def mult_by_col(self, vec, target=None):
        """
        Multiply vector vec into every column of the matrix. If a target is
        provided, it is used to store the result instead of self.
        """

        if not target:
            target = self

        err_code = _cudamat.mult_by_col_vec(self.p_mat, vec.p_mat, target.p_mat)
        if err_code:
            raise generate_exception(err_code)

        return target

    def mult_by_row(self, vec, target=None):
        """
        Multiply vector vec into every row of the matrix. If a target is
        provided, it is used to store the result instead of self.
        """

        if not target:
            target = self

        err_code = _cudamat.mult_by_row_vec(self.p_mat, vec.p_mat, target.p_mat)
        if err_code:
            raise generate_exception(err_code)

        return target

    def div_by_col(self, vec, target=None):
        """
        Divide every column of the matrix by vector vec. If a target is
        provided, it is used to store the result instead of self.
        """

        if not target:
            target = self

        err_code = _cudamat.divide_by_col_vec(self.p_mat, vec.p_mat,
                                              target.p_mat)
        if err_code:
            raise generate_exception(err_code)

        return target

    def div_by_row(self, vec, target=None):
        """
        Divide every row of the matrix by vector vec. If a target is
        provided, it is used to store the result instead of self.
        """

        if not target:
            target = self

        err_code = _cudamat.divide_by_row_vec(self.p_mat, vec.p_mat,
                                              target.p_mat)
        if err_code:
            raise generate_exception(err_code)

        return target

    def sum(self, axis, target=None, mult=1.):
        """
        Sum the matrix along the given dimension, where 0 represents the leading
        dimension and 1 represents the non-leading dimension. If a target is
        not provided, a new vector is created for storing the result. The result
        is multiplied by the given factor mult (defaults to 1).
        """

        return sum(self, axis, target, mult)

    def mean(self, axis, target=None):
        """
        Compute the mean of the matrix along the given dimension, where 0
        represents the leading dimension and 1 represents the non-leading
        dimension. If a target is not provided, a new vector is created for
        storing the result.
        """

        return mean(self, axis, target)

    def add_sums(self, mat, axis, mult=1., beta=1.):
        """
        Add a multiple of the sums of the matrix mat along the given dimension
        to self. Self is scaled by beta before adding anything.
        """

        m = _cudamat.get_leading_dimension(mat.p_mat)
        n = _cudamat.get_nonleading_dimension(mat.p_mat)

        if axis == 0:
            # sum along leading dimension
            check_ones_matrix(m)
            left = CUDAMatrix.ones.slice(0, m)
            left.set_trans(True)
            right = mat

        elif axis == 1:
            # sum along non-leading dimension
            left = mat
            check_ones_matrix(n)
            right = CUDAMatrix.ones.slice(0, n)

        err_code = _cudamat.dot(left.p_mat, right.p_mat, self.p_mat,
                                ct.c_double(beta), ct.c_double(mult))
        if err_code:
            raise generate_exception(err_code)

        return self

    def less_than(self, val, target=None):
        """
        Perform the operation target = 1. * (self < val),
        where val can be a matrix or a scalar.
        """

        if not target:
            target = self

        if isinstance(val, (int, float)):
            err_code = _cudamat.less_than_scalar(self.p_mat, ct.c_double(val),
                                                 target.p_mat)
        else:
            err_code = _cudamat.less_than(self.p_mat, val.p_mat, target.p_mat)

        if err_code:
            raise generate_exception(err_code)

        return target

    def greater_than(self, val, target=None):
        """
        Perform the operation target = 1. * (self > val),
        where val can be a matrix or a scalar.
        """

        if not target:
            target = self

        if isinstance(val, (int, float)):
            err_code = _cudamat.greater_than_scalar(self.p_mat,
                                                    ct.c_double(val),
                                                    target.p_mat)
        else:
            err_code = _cudamat.greater_than(self.p_mat, val.p_mat,
                                             target.p_mat)

        if err_code:
            raise generate_exception(err_code)

        return target

    def equals(self, val, target=None):
        """
        Perform the operation target = 1. * (self == val),
        where val can be a matrix or a scalar.
        """

        if not target:
            target = self

        if isinstance(val, (int, float)):
            err_code = _cudamat.equals_scalar(self.p_mat, ct.c_double(val),
                                              target.p_mat)
        else:
            err_code = _cudamat.equals(self.p_mat, val.p_mat, target.p_mat)

        if err_code:
            raise generate_exception(err_code)

        return target

    def minimum(self, val, target=None):
        """
        Perform the element-wise operation target = min(self, val), where
        val can be a matrix or a scalar.
        """

        if not target:
            target = self

        if isinstance(val, (int, float)):
            err_code = _cudamat.minimum_scalar(self.p_mat, ct.c_double(val),
                                               target.p_mat)
        else:
            err_code = _cudamat.minimum(self.p_mat, val.p_mat, target.p_mat)

        if err_code:
            raise generate_exception(err_code)

        return target

    def maximum(self, val, target=None):
        """
        Perform the element-wise operation target = max(self, val), where
        val can be a matrix or a scalar.
        """

        if not target:
            target = self

        if isinstance(val, (int, float)):
            err_code = _cudamat.maximum_scalar(self.p_mat, ct.c_double(val),
                                               target.p_mat)
        else:
            err_code = _cudamat.maximum(self.p_mat, val.p_mat, target.p_mat)

        if err_code:
            raise generate_exception(err_code)

        return target

    def min(self, axis, target=None):
        """
        Find the minimum value along the given dimension, where 0 represents the
        leading dimension and 1 represents the non-leading dimension. If a
        target is not prvided, a new vector is created for storing the result.
        """

        m, n = self.shape

        if axis == 0:
            if not target:
                target = empty((1, n))

        elif axis == 1:
            if not target:
                target = empty((m, 1))

        err_code = _cudamat.min_by_axis(self.p_mat, target.p_mat,
                                        ct.c_int(axis))
        if err_code:
            raise generate_exception(err_code)

        return target

    def max(self, axis, target=None):
        """
        Find the maximum value along the given dimension, where 0 represents the
        leading dimension and 1 represents the non-leading dimension. If a
        target is not prvided, a new vector is created for storing the result.
        """

        m, n = self.shape

        if axis == 0:
            if not target:
                target = empty((1, n))

        elif axis == 1:
            if not target:
                target = empty((m, 1))

        err_code = _cudamat.max_by_axis(self.p_mat, target.p_mat,
                                        ct.c_int(axis))
        if err_code:
            raise generate_exception(err_code)

        return target

    def argmin(self, axis, target=None):
        """
        Find the index of the minimum value along the given dimension, where 0
        represents the leading dimension and 1 represents the non-leading
        dimension. If a target is not provided, a new vector is created for
        storing the result.
        """

        m, n = self.shape

        if axis == 0:
            if not target:
                target = empty((1, n))

        elif axis == 1:
            if not target:
                target = empty((m, 1))

        err_code = _cudamat.argmin_by_axis(self.p_mat, target.p_mat,
                                           ct.c_int(axis))
        if err_code:
            raise generate_exception(err_code)

        return target

    def argmax(self, axis, target=None):
        """
        Find the index of the maximum value along the given dimension, where 0
        represents the leading dimension and 1 represents the non-leading
        dimension. If a target is not provided, a new vector is created for
        storing the result.
        """

        m, n = self.shape

        if axis == 0:
            if not target:
                target = empty((1, n))

        elif axis == 1:
            if not target:
                target = empty((m, 1))

        err_code = _cudamat.argmax_by_axis(self.p_mat, target.p_mat,
                                           ct.c_int(axis))
        if err_code:
            raise generate_exception(err_code)

        return target

    def sign(self, target=None):
        """
        Find the sign of each element of the matrix.
        """

        if not target:
            target = empty((self.mat.size[0], self.mat.size[1]))

        err_code = _cudamat.sign(self.p_mat, target.p_mat)
        if err_code:
            raise generate_exception(err_code)

        return target

    def apply_sigmoid(self, target=None):
        """
        Apply the logistic sigmoid to each element of the matrix.
        """

        return sigmoid(self, target)

    def apply_tanh(self, target=None):
        """
        Apply the tanh to each element of the matrix.
        """

        return tanh(self, target)

    def apply_soft_threshold(self, alpha, target=None):
        """
        Apply the soft threshold function to each element of the matrix:

        x = sign(x) * max(0, abs(x) - alpha)
        """

        return soft_threshold(self, alpha, target)

    def reciprocal(self, target=None):
        """
        Find the reciprocal of each element of the matrix.
        """

        if not target:
            target = self

        err_code = _cudamat.reciprocal(self.p_mat, target.p_mat)
        if err_code:
            raise generate_exception(err_code)

        return target

    def dot(self, mat2, target=None):
        """
        Multiply the matrix by mat2 from the right.
        """

        return dot(self, mat2, target)

    def add_dot(self, m1, m2, mult=1., beta=1.):
        """
        Add the dot product of m1 and m2 to the matrix, scaled by mult.
        Self is scaled by beta before adding anything.
        """

        err_code = _cudamat.dot(m1.p_mat, m2.p_mat, self.p_mat,
                                ct.c_double(beta), ct.c_double(mult))
        if err_code:
            raise generate_exception(err_code)

        return self

    def subtract_dot(self, m1, m2, mult=1., beta=1.):
        """
        Subtract the dot product of m1 and m2 from the matrix, scaled by mult.
        Self is scaled by beta before subtracting anything.
        """

        return self.add_dot(m1, m2, mult=-1. * mult, beta=beta)

    def add_mult(self, mat2, alpha=1.):
        """
        Add multiple of mat2 to the matrix.
        """

        err_code = _cudamat.add_mult(self.p_mat, mat2.p_mat, ct.c_double(alpha))
        if err_code:
            raise generate_exception(err_code)

        return self

    def subtract_mult(self, mat2, alpha=1.):
        """
        Subtract a multiple of mat2 from the matrix.
        """

        err_code = _cudamat.add_mult(self.p_mat, mat2.p_mat,
                                     ct.c_double(-1. * alpha))
        if err_code:
            raise generate_exception(err_code)

        return self

    def add(self, val, target=None):
        """Add val to self, where val can be a scalar or a CUDAMatrix with the
        same dimensions as self. """

        if not target:
            target = self

        if isinstance(val, CUDAMatrix):
            err_code = _cudamat.add_elementwise(self.p_mat, val.p_mat,
                                                target.p_mat)
        elif isinstance(val, (int, float)):
            err_code = _cudamat.add_scalar(self.p_mat, ct.c_double(val),
                                           target.p_mat)
        else:
            raise ValueError("Value must be of type CUDAMatrix, int, or float.")

        if err_code:
            raise generate_exception(err_code)

        return target

    def subtract(self, val, target=None):
        """Subtract val from self, where val can be a scalar or a CUDAMatrix with
        the same dimensions as self. """

        if not target:
            target = self

        if isinstance(val, CUDAMatrix):
            err_code = _cudamat.subtract_elementwise(self.p_mat, val.p_mat,
                                                     target.p_mat)
        elif isinstance(val, (int, float)):
            err_code = _cudamat.add_scalar(self.p_mat, ct.c_double(-1*val),
                                           target.p_mat)
        else:
            raise ValueError("Value must be of type CUDAMatrix, int, or float.")

        if err_code:
            raise generate_exception(err_code)

        return target

    def divide(self, val, target=None):
        """Divide self by val, where val can be a scalar or
        a CUDAMatrix with the same dimensions as self. """

        if not target:
            target = self

        if isinstance(val, CUDAMatrix):
            err_code = _cudamat.divide_elementwise(self.p_mat, val.p_mat,
                                                   target.p_mat)
        elif isinstance(val, (int, float)):
            err_code = _cudamat.divide_by_scalar(self.p_mat, ct.c_double(val),
                                                 target.p_mat)
        else:
            raise ValueError("Value must be of type CUDAMatrix, int, or float.")

        if err_code:
            raise generate_exception(err_code)

        return target

    def mult(self, val, target=None):
        """Multiply self by val, where val can be a scalar or a CUDAMatrix with
        the same dimensions as self. """

        if not target:
            target = self

        if isinstance(val, CUDAMatrix):
            err_code = _cudamat.mult_elementwise(self.p_mat, val.p_mat,
                                                 target.p_mat)
        elif isinstance(val, (int, float)):
            err_code = _cudamat.mult_by_scalar(self.p_mat, ct.c_double(val),
                                               target.p_mat)
        else:
            raise ValueError("Value must be of type CUDAMatrix, int, or float.")

        if err_code:
            raise generate_exception(err_code)

        return target

    @deprecated
    def assign_scalar(self, alpha):
        """
        Assign scalar alpha to every element of the matrix.
        """

        err_code = _cudamat.assign_scalar(self.p_mat, ct.c_double(alpha))
        if err_code:
            raise generate_exception(err_code)

        return self

    @deprecated
    def mult_by_scalar(self, alpha, target=None):
        """
        Multiply the matrix by a scalar.
        """

        if not target:
            target = self

        err_code = _cudamat.mult_by_scalar(self.p_mat, ct.c_double(alpha),
                                           target.p_mat)
        if err_code:
            raise generate_exception(err_code)

        return target

    @deprecated
    def div_by_scalar(self, alpha, target=None):
        """
        Divide the matrix by a scalar.
        """

        if not target:
            target = self

        err_code = _cudamat.divide_by_scalar(self.p_mat, ct.c_double(alpha),
                                             target.p_mat)
        if err_code:
            raise generate_exception(err_code)

        return target

    @deprecated
    def add_scalar(self, alpha, target=None):
        """
        Increment the matrix by a scalar.
        """

        if not target:
            target = self

        err_code = _cudamat.add_scalar(self.p_mat, ct.c_double(alpha),
                                       target.p_mat)
        if err_code:
            raise generate_exception(err_code)

        return target

    def euclid_norm(self):
        """
        Returns the L2 norm of the matrix flattened to a vector.
        """
        err_code = ct.c_int(0)
        res = _cudamat.euclid_norm(self.p_mat, ct.byref(err_code))

        if err_code:
            raise generate_exception(err_code.value)

        return res

    def manhattan_norm(self):
        """
        Returns the L1 norm of the matrix flattened to a vector.
        """
        err_code = ct.c_int(0)
        res = _cudamat.manhattan_norm(self.p_mat, ct.byref(err_code))

        if err_code:
            raise generate_exception(err_code.value)

        return res

    def allfinite(self):
        """
        Checks if all entries in this matrix are finite, i.e., there is no
        NaN and no positive or negative infinity.
        """
        # Caveat: For a very large matrix of very large finite numbers, the
        # manhattan norm may overflow and allfinite() may return False.
        return np.isfinite(self.manhattan_norm())

    def select_columns(self, indices, target):
        """
        Copies some columns of self into target.
        <indices> must be a row vector. Its elements are float64's representing
        integers, e.g. "34.0" means the integer "34".
        After this call, for all r,c, target[r,c]=self[r,indices[c]].
        This returns target.
        Negative indices are interpreted in the usual Python way: all
        elements of <indices> had better be in the range
        [-self.shape[1], self.shape[1]-1].
        This does bounds checking, but out of bounds indices do not raise an
        exception (because the programmer was lazy). Instead, they result
        in NaN values in <target>.
        """

        err_code = _cudamat.selectRows(self.p_mat, target.p_mat, indices.p_mat)

        if err_code:
            raise generate_exception(err_code)

        return target

    def set_selected_columns(self, indices, source):
        """
        copies all columns of source into some columns of self.
        <indices> must be a row vector. Its elements are float64's representing
        integers, e.g. "34.0" means the integer "34". after this call, for all
        r,c, self[r,indices[c]]=source[r,c]. This returns self.
        Negative indices are interpreted in the usual Python way: all elements
        of <indices> had better be in the range
        [-self.shape[1], self.shape[1]-1].
        This does bounds checking, but out of bounds indices do not raise an
        exception (because the programmer was lazy). Instead, they result in NaN
        values in <self>.
        """

        err_code = _cudamat.setSelectedRows(self.p_mat, source.p_mat,
                                            indices.p_mat)
        if err_code:
            raise generate_exception(err_code)

        return self


def empty(shape):
    """
    Creates and returns a new CUDAMatrix with the given shape.
    """

    mat = cudamat()
    err_code = _cudamat.init_empty(ct.pointer(mat), ct.c_int(shape[0]),
                                   ct.c_int(shape[1]))

    if err_code:
        raise generate_exception(err_code)

    return CUDAMatrix(mat)


def check_ones_matrix(min_size):
    if min_size > CUDAMatrix.ones.shape[0]:
        raise CUDAMatException(
            'Not enough memory allocated for reduction. '
            '({} needed, {} actual), use cudamat.init() '
            'to allocate more'.format(min_size, CUDAMatrix.ones.shape[0]))


def sum(mat, axis, target=None, mult=1.):
    """
    Sum the matrix along the given dimension, where 0 represents the leading
    dimension and 1 represents the non-leading dimension. If a target is
    not provided, a new vector is created for storing the result. The result
    is multiplied by the given factor mult (defaults to 1).
    """

    m = _cudamat.get_leading_dimension(mat.p_mat)
    n = _cudamat.get_nonleading_dimension(mat.p_mat)

    if axis == 0:
        # sum along leading dimension
        check_ones_matrix(m)
        left = CUDAMatrix.ones.slice(0, m)
        left.set_trans(True)
        right = mat

        if not target:
            target = empty((1, n))

    elif axis == 1:
        # sum along non-leading dimension
        left = mat
        check_ones_matrix(n)
        right = CUDAMatrix.ones.slice(0, n)

        if not target:
            target = empty((m, 1))

    err_code = _cudamat.dot(left.p_mat, right.p_mat, target.p_mat,
                            ct.c_double(0.), ct.c_double(mult))
    if err_code:
        raise generate_exception(err_code)

    return target


def mean(mat, axis, target=None):
    """
    Compute the mean of the matrix along the given dimension, where 0 represents
    the leading dimension and 1 represents the non-leading dimension. If a
    target is not provided, a new vector is created for storing the result.
    """

    return sum(mat, axis, target=target, mult=1. / mat.shape[axis])


def dot(m1, m2, target=None, beta=0., alpha=1.):
    """
    Find the dot product between m1 and m2 and store in target:
    target = beta*target + alpha*(m1 m2)
    If no target is given, it will be created automatically, but not
    initialized -- so beta should be left at its default value zero.
    """

    if not target:
        m = _cudamat.get_leading_dimension(m1.p_mat)
        n = _cudamat.get_nonleading_dimension(m2.p_mat)

        target = empty((m, n))

    err_code = _cudamat.dot(m1.p_mat, m2.p_mat,
                            target.p_mat, ct.c_double(beta),
                            ct.c_double(alpha))
    if err_code:
        raise generate_exception(err_code)

    return target


def vdot(m1, m2):
    """
    Compute the vector dot product of matrices m1 and m2.
    """

    err_code = ct.c_int(0)
    res = _cudamat.vdot(m1.p_mat, m2.p_mat, ct.byref(err_code))

    if err_code:
        raise generate_exception(err_code.value)

    return res


def sigmoid(mat, target=None):
    """
    Apply the logistic sigmoid to each element of the matrix mat.
    """

    if not target:
        target = mat

    err_code = _cudamat.apply_sigmoid(mat.p_mat, target.p_mat)
    if err_code:
        raise generate_exception(err_code)

    return target


def tanh(mat, target=None):
    """
    Apply the tanh to each element of the matrix mat.
    """

    if not target:
        target = mat

    err_code = _cudamat.apply_tanh(mat.p_mat, target.p_mat)
    if err_code:
        raise generate_exception(err_code)

    return target


def soft_threshold(mat, alpha, target=None):
    """
    Apply the soft threshold function to each element of the matrix:

    mat = sign(mat) * max(0, abs(mat) - alpha)
    """

    if not target:
        target = mat

    err_code = _cudamat.apply_soft_threshold(mat.p_mat, ct.c_double(alpha),
                                             target.p_mat)
    if err_code:
        raise generate_exception(err_code)

    return target


def abs(mat, target=None):
    """
    Apply abs to each element of the matrix mat.
    """

    if not target:
        target = mat

    err_code = _cudamat.apply_abs(mat.p_mat, target.p_mat)
    if err_code:
        raise generate_exception(err_code)

    return target


def log_1_plus_exp(mat, target=None):
    """
    Apply log(1+exp(x)) to each element of the matrix mat.
    """

    if not target:
        target = mat

    err_code = _cudamat.apply_log_1_plus_exp(mat.p_mat, target.p_mat)
    if err_code:
        raise generate_exception(err_code)

    return target


def log(mat, target=None):
    """
    Find the natural logarithm of each element of the matrix mat.
    """

    if not target:
        target = mat

    err_code = _cudamat.apply_log(mat.p_mat, target.p_mat)
    if err_code:
        raise generate_exception(err_code)

    return target


def exp(mat, target=None):
    """
    Apply the exponential function to each element of the matrix mat.
    """

    if not target:
        target = mat

    err_code = _cudamat.apply_exp(mat.p_mat, target.p_mat)
    if err_code:
        raise generate_exception(err_code)

    return target


def gamma(mat, target=None):
    """
    Apply the gamma function to each element of the matrix mat.
    """

    if not target:
        target = mat

    err_code = _cudamat.apply_gamma(mat.p_mat, target.p_mat)
    if err_code:
        raise generate_exception(err_code)

    return target


def lgamma(mat, target=None):
    """
    Apply the log gamma function to each element of the matrix mat.
    """

    if not target:
        target = mat

    err_code = _cudamat.apply_lgamma(mat.p_mat, target.p_mat)
    if err_code:
        raise generate_exception(err_code)

    return target


def sqrt(mat, target=None):
    """
    Compute the square root of each element of the matrix mat.
    """

    if not target:
        target = mat

    err_code = _cudamat.apply_sqrt(mat.p_mat, target.p_mat)
    if err_code:
        raise generate_exception(err_code)

    return target


def pow(mat, p, target=None):
    """
    If p is a scalar, compute the 'p'th power of each element of the matrix mat,
    otherwise raise each element of the matrix mat to the power given by the
    corresponding element of the matrix p.
    """

    if not target:
        target = mat

    if isinstance(p, CUDAMatrix):
        err_code = _cudamat.apply_pow_matrix(mat.p_mat, p.p_mat, target.p_mat)
    elif isinstance(p, (int, float)):
        err_code = _cudamat.apply_pow(mat.p_mat, ct.c_double(p), target.p_mat)
    else:
        raise ValueError("Value must be of type CUDAMatrix, int, or float.")

    if err_code:
        raise generate_exception(err_code)

    return target


def where(condition_mat, if_mat, else_mat, target=None):
    """
    For each element i, j, store if_math[i, j] in target[i,j] if
    condition_mat[i, j] is True, and else_mat[i, j] otherwise.
    """
    if not target:
        target = condition_mat

    err_code = _cudamat.where(condition_mat.p_mat, if_mat.p_mat,
                              else_mat.p_mat, target.p_mat)
    if err_code:
        raise generate_exception(err_code)

    return target


def correlate(mat, kernel, target=None):
    """
    Cross-correlate a matrix with a kernel matrix.
    The kernel matrix is centered over each element of the matrix mat.
    Width and height of the kernel matrix must be an odd integer.
    If a target is not provided, a new matrix is created for storing the result.
    Note that this function cannot operate in-place.
    """
    if not target:
        m = _cudamat.get_leading_dimension(mat.p_mat)
        n = _cudamat.get_nonleading_dimension(mat.p_mat)

        target = empty((m, n))

    err_code = _cudamat.correlate(mat.p_mat, kernel.p_mat, target.p_mat)
    if err_code:
        raise generate_exception(err_code)

    return target


def cuda_sync_threads():
    _cudamat.cuda_sync_threads()


def reformat(array, copy=True):
    """
    Returns array as a float64 array in FORTRAN order.
    If copy is set to False, the array will only be copied if it is not already
    in the correct format.
    """
    return np.array(array, dtype=np.float64, order='F', copy=copy)


def cuda_set_device(dev_id):
    """
    Selects the CUDA device with the given ID.
    """

    err_code = _cudamat.cuda_set_device(ct.c_int(dev_id))
    if err_code:
        raise generate_exception(err_code)


def cublas_init(max_ones=(1024*256)):
    """
    Initialize Cublas.

    'max_ones' is an optional argument that determines the length of
    the largest sum that can be computed using Cublas matrix multiply.
    A larger value causes more memory to be allocated for this purpose.
    """

    err = _cudamat.cublas_init()
    if err:
        raise CUDAMatException('error initializing CUBLAS: (err=%u)' % err)
    CUDAMatrix.ones = empty((max_ones, 1)).assign(1.0)

init = cublas_init


def cublas_shutdown():
    """
    Shut down Cublas.
    """

    CUDAMatrix.ones = 0
    _cudamat.cublas_shutdown()

shutdown = cublas_shutdown