summaryrefslogtreecommitdiff
path: root/ot/gromov/_bregman.py
blob: 18cef568b9908e494e90da754ac306841a91d0d8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
# -*- coding: utf-8 -*-
"""
Bregman projections solvers for entropic Gromov-Wasserstein
"""

# Author: Erwan Vautier <erwan.vautier@gmail.com>
#         Nicolas Courty <ncourty@irisa.fr>
#         Rémi Flamary <remi.flamary@unice.fr>
#         Titouan Vayer <titouan.vayer@irisa.fr>
#         Cédric Vincent-Cuaz <cedvincentcuaz@gmail.com>
#
# License: MIT License

import numpy as np
import warnings

from ..bregman import sinkhorn
from ..utils import dist, list_to_array, check_random_state, unif
from ..backend import get_backend

from ._utils import init_matrix, gwloss, gwggrad
from ._utils import update_square_loss, update_kl_loss, update_feature_matrix


def entropic_gromov_wasserstein(
        C1, C2, p=None, q=None, loss_fun='square_loss', epsilon=0.1, symmetric=None, G0=None, max_iter=1000,
        tol=1e-9, solver='PGD', warmstart=False, verbose=False, log=False, **kwargs):
    r"""
    Returns the Gromov-Wasserstein transport between :math:`(\mathbf{C_1}, \mathbf{p})` and :math:`(\mathbf{C_2}, \mathbf{q})`
    estimated using Sinkhorn projections.

    If `solver="PGD"`, the function solves the following entropic-regularized
    Gromov-Wasserstein optimization problem using Projected Gradient Descent [12]:

    .. math::
        \mathbf{T}^* \in \mathop{\arg\min}_\mathbf{T} \quad \sum_{i,j,k,l} L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l}) \mathbf{T}_{i,j} \mathbf{T}_{k,l} - \epsilon H(\mathbf{T})

        s.t. \ \mathbf{T} \mathbf{1} &= \mathbf{p}

             \mathbf{T}^T \mathbf{1} &= \mathbf{q}

             \mathbf{T} &\geq 0

    Else if `solver="PPA"`, the function solves the following Gromov-Wasserstein
    optimization problem using Proximal Point Algorithm [51]:

    .. math::
        \mathbf{T}^* \in \mathop{\arg\min}_\mathbf{T} \quad \sum_{i,j,k,l} L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l}) \mathbf{T}_{i,j} \mathbf{T}_{k,l}

        s.t. \ \mathbf{T} \mathbf{1} &= \mathbf{p}

             \mathbf{T}^T \mathbf{1} &= \mathbf{q}

             \mathbf{T} &\geq 0
    Where :

    - :math:`\mathbf{C_1}`: Metric cost matrix in the source space
    - :math:`\mathbf{C_2}`: Metric cost matrix in the target space
    - :math:`\mathbf{p}`: distribution in the source space
    - :math:`\mathbf{q}`: distribution in the target space
    - `L`: loss function to account for the misfit between the similarity matrices
    - `H`: entropy

    .. note:: If the inner solver `ot.sinkhorn` did not convergence, the
        optimal coupling :math:`\mathbf{T}` returned by this function does not
        necessarily satisfy the marginal constraints
        :math:`\mathbf{T}\mathbf{1}=\mathbf{p}` and
        :math:`\mathbf{T}^T\mathbf{1}=\mathbf{q}`. So the returned
        Gromov-Wasserstein loss does not necessarily satisfy distance
        properties and may be negative.

    Parameters
    ----------
    C1 : array-like, shape (ns, ns)
        Metric cost matrix in the source space
    C2 : array-like, shape (nt, nt)
        Metric cost matrix in the target space
    p : array-like, shape (ns,), optional
        Distribution in the source space.
        If let to its default value None, uniform distribution is taken.
    q : array-like, shape (nt,), optional
        Distribution in the target space.
        If let to its default value None, uniform distribution is taken.
    loss_fun :  string, optional
        Loss function used for the solver either 'square_loss' or 'kl_loss'
    epsilon : float, optional
        Regularization term >0
    symmetric : bool, optional
        Either C1 and C2 are to be assumed symmetric or not.
        If let to its default None value, a symmetry test will be conducted.
        Else if set to True (resp. False), C1 and C2 will be assumed symmetric (resp. asymmetric).
    G0: array-like, shape (ns,nt), optional
        If None the initial transport plan of the solver is pq^T.
        Otherwise G0 will be used as initial transport of the solver. G0 is not
        required to satisfy marginal constraints but we strongly recommand it
        to correcly estimate the GW distance.
    max_iter : int, optional
        Max number of iterations
    tol : float, optional
        Stop threshold on error (>0)
    solver: string, optional
        Solver to use either 'PGD' for Projected Gradient Descent or 'PPA'
        for Proximal Point Algorithm.
        Default value is 'PGD'.
    warmstart: bool, optional
        Either to perform warmstart of dual potentials in the successive
        Sinkhorn projections.
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        Record log if True.
    **kwargs: dict
        parameters can be directly passed to the ot.sinkhorn solver.
        Such as `numItermax` and `stopThr` to control its estimation precision,
        e.g [51] suggests to use `numItermax=1`.
    Returns
    -------
    T : array-like, shape (`ns`, `nt`)
        Optimal coupling between the two spaces

    References
    ----------
    .. [12] Gabriel Peyré, Marco Cuturi, and Justin Solomon,
        "Gromov-Wasserstein averaging of kernel and distance matrices."
        International Conference on Machine Learning (ICML). 2016.

    .. [47] Chowdhury, S., & Mémoli, F. (2019). The gromov–wasserstein
        distance between networks and stable network invariants.
        Information and Inference: A Journal of the IMA, 8(4), 757-787.

    .. [51] Xu, H., Luo, D., Zha, H., & Duke, L. C. (2019). Gromov-wasserstein
        learning for graph matching and node embedding. In International
        Conference on Machine Learning (ICML), 2019.
    """
    if solver not in ['PGD', 'PPA']:
        raise ValueError("Unknown solver '%s'. Pick one in ['PGD', 'PPA']." % solver)

    C1, C2 = list_to_array(C1, C2)
    arr = [C1, C2]
    if p is not None:
        arr.append(list_to_array(p))
    else:
        p = unif(C1.shape[0], type_as=C1)
    if q is not None:
        arr.append(list_to_array(q))
    else:
        q = unif(C2.shape[0], type_as=C2)

    if G0 is not None:
        arr.append(G0)

    nx = get_backend(*arr)

    if G0 is None:
        G0 = nx.outer(p, q)

    T = G0
    constC, hC1, hC2 = init_matrix(C1, C2, p, q, loss_fun, nx)

    if symmetric is None:
        symmetric = nx.allclose(C1, C1.T, atol=1e-10) and nx.allclose(C2, C2.T, atol=1e-10)
    if not symmetric:
        constCt, hC1t, hC2t = init_matrix(C1.T, C2.T, p, q, loss_fun, nx)

    cpt = 0
    err = 1

    if warmstart:
        # initialize potentials to cope with ot.sinkhorn initialization
        N1, N2 = C1.shape[0], C2.shape[0]
        mu = nx.zeros(N1, type_as=C1) - np.log(N1)
        nu = nx.zeros(N2, type_as=C2) - np.log(N2)

    if log:
        log = {'err': []}

    while (err > tol and cpt < max_iter):

        Tprev = T

        # compute the gradient
        if symmetric:
            tens = gwggrad(constC, hC1, hC2, T, nx)
        else:
            tens = 0.5 * (gwggrad(constC, hC1, hC2, T, nx) + gwggrad(constCt, hC1t, hC2t, T, nx))

        if solver == 'PPA':
            tens = tens - epsilon * nx.log(T)

        if warmstart:
            T, loginn = sinkhorn(p, q, tens, epsilon, method='sinkhorn', log=True, warmstart=(mu, nu), **kwargs)
            mu = epsilon * nx.log(loginn['u'])
            nu = epsilon * nx.log(loginn['v'])

        else:
            T = sinkhorn(p, q, tens, epsilon, method='sinkhorn', **kwargs)

        if cpt % 10 == 0:
            # we can speed up the process by checking for the error only all
            # the 10th iterations
            err = nx.norm(T - Tprev)

            if log:
                log['err'].append(err)

            if verbose:
                if cpt % 200 == 0:
                    print('{:5s}|{:12s}'.format(
                        'It.', 'Err') + '\n' + '-' * 19)
                print('{:5d}|{:8e}|'.format(cpt, err))

        cpt += 1

    if abs(nx.sum(T) - 1) > 1e-5:
        warnings.warn("Solver failed to produce a transport plan. You might "
                      "want to increase the regularization parameter `epsilon`.")
    if log:
        log['gw_dist'] = gwloss(constC, hC1, hC2, T, nx)
        return T, log
    else:
        return T


def entropic_gromov_wasserstein2(
        C1, C2, p=None, q=None, loss_fun='square_loss', epsilon=0.1, symmetric=None, G0=None, max_iter=1000,
        tol=1e-9, solver='PGD', warmstart=False, verbose=False, log=False, **kwargs):
    r"""
    Returns the Gromov-Wasserstein discrepancy between :math:`(\mathbf{C_1}, \mathbf{p})` and :math:`(\mathbf{C_2}, \mathbf{q})`
    estimated using Sinkhorn projections.

    If `solver="PGD"`, the function solves the following entropic-regularized
    Gromov-Wasserstein optimization problem using Projected Gradient Descent [12]:

    .. math::
        \mathbf{GW} = \mathop{\min}_\mathbf{T} \quad \sum_{i,j,k,l} L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l}) \mathbf{T}_{i,j} \mathbf{T}_{k,l} - \epsilon H(\mathbf{T})

        s.t. \ \mathbf{T} \mathbf{1} &= \mathbf{p}

             \mathbf{T}^T \mathbf{1} &= \mathbf{q}

             \mathbf{T} &\geq 0

    Else if `solver="PPA"`, the function solves the following Gromov-Wasserstein
    optimization problem using Proximal Point Algorithm [51]:

    .. math::
        \mathbf{GW} = \mathop{\min}_\mathbf{T} \quad \sum_{i,j,k,l} L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l}) \mathbf{T}_{i,j} \mathbf{T}_{k,l}

        s.t. \ \mathbf{T} \mathbf{1} &= \mathbf{p}

             \mathbf{T}^T \mathbf{1} &= \mathbf{q}

             \mathbf{T} &\geq 0
    Where :

    - :math:`\mathbf{C_1}`: Metric cost matrix in the source space
    - :math:`\mathbf{C_2}`: Metric cost matrix in the target space
    - :math:`\mathbf{p}`: distribution in the source space
    - :math:`\mathbf{q}`: distribution in the target space
    - `L`: loss function to account for the misfit between the similarity matrices
    - `H`: entropy

    .. note:: If the inner solver `ot.sinkhorn` did not convergence, the
        optimal coupling :math:`\mathbf{T}` returned by this function does not
        necessarily satisfy the marginal constraints
        :math:`\mathbf{T}\mathbf{1}=\mathbf{p}` and
        :math:`\mathbf{T}^T\mathbf{1}=\mathbf{q}`. So the returned
        Gromov-Wasserstein loss does not necessarily satisfy distance
        properties and may be negative.

    Parameters
    ----------
    C1 : array-like, shape (ns, ns)
        Metric cost matrix in the source space
    C2 : array-like, shape (nt, nt)
        Metric cost matrix in the target space
    p : array-like, shape (ns,), optional
        Distribution in the source space.
        If let to its default value None, uniform distribution is taken.
    q : array-like, shape (nt,), optional
        Distribution in the target space.
        If let to its default value None, uniform distribution is taken.
    loss_fun :  string, optional
        Loss function used for the solver either 'square_loss' or 'kl_loss'
    epsilon : float, optional
        Regularization term >0
    symmetric : bool, optional
        Either C1 and C2 are to be assumed symmetric or not.
        If let to its default None value, a symmetry test will be conducted.
        Else if set to True (resp. False), C1 and C2 will be assumed symmetric (resp. asymmetric).
    G0: array-like, shape (ns,nt), optional
        If None the initial transport plan of the solver is pq^T.
        Otherwise G0 will be used as initial transport of the solver. G0 is not
        required to satisfy marginal constraints but we strongly recommand it
        to correcly estimate the GW distance.
    max_iter : int, optional
        Max number of iterations
    tol : float, optional
        Stop threshold on error (>0)
    solver: string, optional
        Solver to use either 'PGD' for Projected Gradient Descent or 'PPA'
        for Proximal Point Algorithm.
        Default value is 'PGD'.
    warmstart: bool, optional
        Either to perform warmstart of dual potentials in the successive
        Sinkhorn projections.
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        Record log if True.
    **kwargs: dict
        parameters can be directly passed to the ot.sinkhorn solver.
        Such as `numItermax` and `stopThr` to control its estimation precision,
        e.g [51] suggests to use `numItermax=1`.
    Returns
    -------
    gw_dist : float
        Gromov-Wasserstein distance

    References
    ----------
    .. [12] Gabriel Peyré, Marco Cuturi, and Justin Solomon,
        "Gromov-Wasserstein averaging of kernel and distance matrices."
        International Conference on Machine Learning (ICML). 2016.

    .. [51] Xu, H., Luo, D., Zha, H., & Duke, L. C. (2019). Gromov-wasserstein
        learning for graph matching and node embedding. In International
        Conference on Machine Learning (ICML), 2019.
    """
    T, logv = entropic_gromov_wasserstein(
        C1, C2, p, q, loss_fun, epsilon, symmetric, G0, max_iter,
        tol, solver, warmstart, verbose, log=True, **kwargs)

    logv['T'] = T

    if log:
        return logv['gw_dist'], logv
    else:
        return logv['gw_dist']


def entropic_gromov_barycenters(
        N, Cs, ps=None, p=None, lambdas=None, loss_fun='square_loss',
        epsilon=0.1, symmetric=True, max_iter=1000, tol=1e-9, warmstartT=False,
        verbose=False, log=False, init_C=None, random_state=None, **kwargs):
    r"""
    Returns the Gromov-Wasserstein barycenters of `S` measured similarity matrices :math:`(\mathbf{C}_s)_{1 \leq s \leq S}`
    estimated using Gromov-Wasserstein transports from Sinkhorn projections.

    The function solves the following optimization problem:

    .. math::

        \mathbf{C} = \mathop{\arg \min}_{\mathbf{C}\in \mathbb{R}^{N \times N}} \quad \sum_s \lambda_s \mathrm{GW}(\mathbf{C}, \mathbf{C}_s, \mathbf{p}, \mathbf{p}_s)

    Where :

    - :math:`\mathbf{C}_s`: metric cost matrix
    - :math:`\mathbf{p}_s`: distribution

    Parameters
    ----------
    N : int
        Size of the targeted barycenter
    Cs : list of S array-like of shape (ns,ns)
        Metric cost matrices
    ps : list of S array-like of shape (ns,), optional
        Sample weights in the `S` spaces.
        If let to its default value None, uniform distributions are taken.
    p : array-like, shape (N,), optional
        Weights in the targeted barycenter.
        If let to its default value None, uniform distribution is taken.
    lambdas : list of float, optional
        List of the `S` spaces' weights.
        If let to its default value None, uniform weights are taken.
    loss_fun : callable, optional
        tensor-matrix multiplication function based on specific loss function
    epsilon : float, optional
        Regularization term >0
    symmetric : bool, optional.
        Either structures are to be assumed symmetric or not. Default value is True.
        Else if set to True (resp. False), C1 and C2 will be assumed symmetric (resp. asymmetric).
    max_iter : int, optional
        Max number of iterations
    tol : float, optional
        Stop threshold on error (>0)
    warmstartT: bool, optional
        Either to perform warmstart of transport plans in the successive
        gromov-wasserstein transport problems.
    verbose : bool, optional
        Print information along iterations.
    log : bool, optional
        Record log if True.
    init_C : bool | array-like, shape (N, N)
        Random initial value for the :math:`\mathbf{C}` matrix provided by user.
    random_state : int or RandomState instance, optional
        Fix the seed for reproducibility
    **kwargs: dict
        parameters can be directly passed to the `ot.entropic_gromov_wasserstein` solver.

    Returns
    -------
    C : array-like, shape (`N`, `N`)
        Similarity matrix in the barycenter space (permutated arbitrarily)
    log : dict
        Log dictionary of error during iterations. Return only if `log=True` in parameters.

    References
    ----------
    .. [12] Gabriel Peyré, Marco Cuturi, and Justin Solomon,
        "Gromov-Wasserstein averaging of kernel and distance matrices."
        International Conference on Machine Learning (ICML). 2016.
    """
    Cs = list_to_array(*Cs)
    arr = [*Cs]
    if ps is not None:
        arr += list_to_array(*ps)
    else:
        ps = [unif(C.shape[0], type_as=C) for C in Cs]
    if p is not None:
        arr.append(list_to_array(p))
    else:
        p = unif(N, type_as=Cs[0])

    nx = get_backend(*arr)

    S = len(Cs)
    if lambdas is None:
        lambdas = [1. / S] * S

    # Initialization of C : random SPD matrix (if not provided by user)
    if init_C is None:
        generator = check_random_state(random_state)
        xalea = generator.randn(N, 2)
        C = dist(xalea, xalea)
        C /= C.max()
        C = nx.from_numpy(C, type_as=p)
    else:
        C = init_C

    cpt = 0
    err = 1

    error = []

    if warmstartT:
        T = [None] * S

    while (err > tol) and (cpt < max_iter):
        Cprev = C
        if warmstartT:
            T = [entropic_gromov_wasserstein(
                Cs[s], C, ps[s], p, loss_fun, epsilon, symmetric, T[s],
                max_iter, 1e-4, verbose=verbose, log=False, **kwargs) for s in range(S)]
        else:
            T = [entropic_gromov_wasserstein(
                Cs[s], C, ps[s], p, loss_fun, epsilon, symmetric, None,
                max_iter, 1e-4, verbose=verbose, log=False, **kwargs) for s in range(S)]

        if loss_fun == 'square_loss':
            C = update_square_loss(p, lambdas, T, Cs)

        elif loss_fun == 'kl_loss':
            C = update_kl_loss(p, lambdas, T, Cs)

        if cpt % 10 == 0:
            # we can speed up the process by checking for the error only all
            # the 10th iterations
            err = nx.norm(C - Cprev)
            error.append(err)

            if verbose:
                if cpt % 200 == 0:
                    print('{:5s}|{:12s}'.format(
                        'It.', 'Err') + '\n' + '-' * 19)
                print('{:5d}|{:8e}|'.format(cpt, err))

        cpt += 1

    if log:
        return C, {"err": error}
    else:
        return C


def entropic_fused_gromov_wasserstein(
        M, C1, C2, p=None, q=None, loss_fun='square_loss', epsilon=0.1,
        symmetric=None, alpha=0.5, G0=None, max_iter=1000, tol=1e-9,
        solver='PGD', warmstart=False, verbose=False, log=False, **kwargs):
    r"""
    Returns the Fused Gromov-Wasserstein transport between :math:`(\mathbf{C_1}, \mathbf{Y_1}, \mathbf{p})` and :math:`(\mathbf{C_2}, \mathbf{Y_2}, \mathbf{q})`
    with pairwise distance matrix :math:`\mathbf{M}` between node feature matrices :math:`\mathbf{Y_1}` and :math:`\mathbf{Y_2}`,
    estimated using Sinkhorn projections.

    If `solver="PGD"`, the function solves the following entropic-regularized
    Fused Gromov-Wasserstein optimization problem using Projected Gradient Descent [12]:

    .. math::
        \mathbf{T}^* \in \mathop{\arg\min}_\mathbf{T} \quad (1 - \alpha) \langle \mathbf{T}, \mathbf{M} \rangle_F +
        \alpha \sum_{i,j,k,l} L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l}) \mathbf{T}_{i,j} \mathbf{T}_{k,l} - \epsilon H(\mathbf{T})

        s.t. \ \mathbf{T} \mathbf{1} &= \mathbf{p}

             \mathbf{T}^T \mathbf{1} &= \mathbf{q}

             \mathbf{T} &\geq 0

    Else if `solver="PPA"`, the function solves the following Fused Gromov-Wasserstein
    optimization problem using Proximal Point Algorithm [51]:

    .. math::
        \mathbf{T}^* \in\mathop{\arg\min}_\mathbf{T} \quad (1 - \alpha) \langle \mathbf{T}, \mathbf{M} \rangle_F +
        \alpha \sum_{i,j,k,l} L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l}) \mathbf{T}_{i,j} \mathbf{T}_{k,l}

        s.t. \ \mathbf{T} \mathbf{1} &= \mathbf{p}

             \mathbf{T}^T \mathbf{1} &= \mathbf{q}

             \mathbf{T} &\geq 0
    Where :

    - :math:`\mathbf{M}`: metric cost matrix between features across domains
    - :math:`\mathbf{C_1}`: Metric cost matrix in the source space
    - :math:`\mathbf{C_2}`: Metric cost matrix in the target space
    - :math:`\mathbf{p}`: distribution in the source space
    - :math:`\mathbf{q}`: distribution in the target space
    - `L`: loss function to account for the misfit between the similarity and feature matrices
    - `H`: entropy
    - :math:`\alpha`: trade-off parameter

    .. note:: If the inner solver `ot.sinkhorn` did not convergence, the
        optimal coupling :math:`\mathbf{T}` returned by this function does not
        necessarily satisfy the marginal constraints
        :math:`\mathbf{T}\mathbf{1}=\mathbf{p}` and
        :math:`\mathbf{T}^T\mathbf{1}=\mathbf{q}`. So the returned
        Fused Gromov-Wasserstein loss does not necessarily satisfy distance
        properties and may be negative.

    Parameters
    ----------
    M : array-like, shape (ns, nt)
        Metric cost matrix between features across domains
    C1 : array-like, shape (ns, ns)
        Metric cost matrix in the source space
    C2 : array-like, shape (nt, nt)
        Metric cost matrix in the target space
    p : array-like, shape (ns,), optional
        Distribution in the source space.
        If let to its default value None, uniform distribution is taken.
    q : array-like, shape (nt,), optional
        Distribution in the target space.
        If let to its default value None, uniform distribution is taken.
    loss_fun :  string, optional
        Loss function used for the solver either 'square_loss' or 'kl_loss'
    epsilon : float, optional
        Regularization term >0
    symmetric : bool, optional
        Either C1 and C2 are to be assumed symmetric or not.
        If let to its default None value, a symmetry test will be conducted.
        Else if set to True (resp. False), C1 and C2 will be assumed symmetric (resp. asymetric).
    alpha : float, optional
        Trade-off parameter (0 < alpha < 1)
    G0: array-like, shape (ns,nt), optional
        If None the initial transport plan of the solver is pq^T.
        Otherwise G0 will be used as initial transport of the solver. G0 is not
        required to satisfy marginal constraints but we strongly recommand it
        to correcly estimate the GW distance.
    max_iter : int, optional
        Max number of iterations
    tol : float, optional
        Stop threshold on error (>0)
    solver: string, optional
        Solver to use either 'PGD' for Projected Gradient Descent or 'PPA'
        for Proximal Point Algorithm.
        Default value is 'PGD'.
    warmstart: bool, optional
        Either to perform warmstart of dual potentials in the successive
        Sinkhorn projections.
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        Record log if True.
    **kwargs: dict
        parameters can be directly passed to the ot.sinkhorn solver.
        Such as `numItermax` and `stopThr` to control its estimation precision,
        e.g [51] suggests to use `numItermax=1`.
    Returns
    -------
    T : array-like, shape (`ns`, `nt`)
        Optimal coupling between the two joint spaces

    References
    ----------
    .. [12] Gabriel Peyré, Marco Cuturi, and Justin Solomon,
        "Gromov-Wasserstein averaging of kernel and distance matrices."
        International Conference on Machine Learning (ICML). 2016.

    .. [47] Chowdhury, S., & Mémoli, F. (2019). The gromov–wasserstein
        distance between networks and stable network invariants.
        Information and Inference: A Journal of the IMA, 8(4), 757-787.

    .. [51] Xu, H., Luo, D., Zha, H., & Duke, L. C. (2019). Gromov-wasserstein
        learning for graph matching and node embedding. In International
        Conference on Machine Learning (ICML), 2019.

    .. [24] Vayer Titouan, Chapel Laetitia, Flamary Rémi, Tavenard Romain
        and Courty Nicolas "Optimal Transport for structured data with
        application on graphs", International Conference on Machine Learning
        (ICML). 2019.
    """
    if solver not in ['PGD', 'PPA']:
        raise ValueError("Unknown solver '%s'. Pick one in ['PGD', 'PPA']." % solver)

    M, C1, C2 = list_to_array(M, C1, C2)
    arr = [M, C1, C2]
    if p is not None:
        arr.append(list_to_array(p))
    else:
        p = unif(C1.shape[0], type_as=C1)
    if q is not None:
        arr.append(list_to_array(q))
    else:
        q = unif(C2.shape[0], type_as=C2)

    if G0 is not None:
        arr.append(G0)

    nx = get_backend(*arr)

    if G0 is None:
        G0 = nx.outer(p, q)

    T = G0
    constC, hC1, hC2 = init_matrix(C1, C2, p, q, loss_fun, nx)
    if symmetric is None:
        symmetric = nx.allclose(C1, C1.T, atol=1e-10) and nx.allclose(C2, C2.T, atol=1e-10)
    if not symmetric:
        constCt, hC1t, hC2t = init_matrix(C1.T, C2.T, p, q, loss_fun, nx)
    cpt = 0
    err = 1

    if warmstart:
        # initialize potentials to cope with ot.sinkhorn initialization
        N1, N2 = C1.shape[0], C2.shape[0]
        mu = nx.zeros(N1, type_as=C1) - np.log(N1)
        nu = nx.zeros(N2, type_as=C2) - np.log(N2)

    if log:
        log = {'err': []}

    while (err > tol and cpt < max_iter):

        Tprev = T

        # compute the gradient
        if symmetric:
            tens = alpha * gwggrad(constC, hC1, hC2, T, nx) + (1 - alpha) * M
        else:
            tens = (alpha * 0.5) * (gwggrad(constC, hC1, hC2, T, nx) + gwggrad(constCt, hC1t, hC2t, T, nx)) + (1 - alpha) * M

        if solver == 'PPA':
            tens = tens - epsilon * nx.log(T)

        if warmstart:
            T, loginn = sinkhorn(p, q, tens, epsilon, method='sinkhorn', log=True, warmstart=(mu, nu), **kwargs)
            mu = epsilon * nx.log(loginn['u'])
            nu = epsilon * nx.log(loginn['v'])

        else:
            T = sinkhorn(p, q, tens, epsilon, method='sinkhorn', **kwargs)

        if cpt % 10 == 0:
            # we can speed up the process by checking for the error only all
            # the 10th iterations
            err = nx.norm(T - Tprev)

            if log:
                log['err'].append(err)

            if verbose:
                if cpt % 200 == 0:
                    print('{:5s}|{:12s}'.format(
                        'It.', 'Err') + '\n' + '-' * 19)
                print('{:5d}|{:8e}|'.format(cpt, err))

        cpt += 1

    if abs(nx.sum(T) - 1) > 1e-5:
        warnings.warn("Solver failed to produce a transport plan. You might "
                      "want to increase the regularization parameter `epsilon`.")
    if log:
        log['fgw_dist'] = (1 - alpha) * nx.sum(M * T) + alpha * gwloss(constC, hC1, hC2, T, nx)
        return T, log
    else:
        return T


def entropic_fused_gromov_wasserstein2(
        M, C1, C2, p=None, q=None, loss_fun='square_loss', epsilon=0.1,
        symmetric=None, alpha=0.5, G0=None, max_iter=1000, tol=1e-9,
        solver='PGD', warmstart=False, verbose=False, log=False, **kwargs):
    r"""
    Returns the Fused Gromov-Wasserstein transport between :math:`(\mathbf{C_1}, \mathbf{Y_1}, \mathbf{p})` and :math:`(\mathbf{C_2}, \mathbf{Y_2}, \mathbf{q})`
    with pairwise distance matrix :math:`\mathbf{M}` between node feature matrices :math:`\mathbf{Y_1}` and :math:`\mathbf{Y_2}`,
    estimated using Sinkhorn projections.

    If `solver="PGD"`, the function solves the following entropic-regularized
    Fused Gromov-Wasserstein optimization problem using Projected Gradient Descent [12]:

    .. math::
        \mathbf{FGW} = \mathop{\min}_\mathbf{T} \quad (1 - \alpha) \langle \mathbf{T}, \mathbf{M} \rangle_F +
        \alpha \sum_{i,j,k,l} L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l}) \mathbf{T}_{i,j} \mathbf{T}_{k,l} - \epsilon H(\mathbf{T})

        s.t. \ \mathbf{T} \mathbf{1} &= \mathbf{p}

             \mathbf{T}^T \mathbf{1} &= \mathbf{q}

             \mathbf{T} &\geq 0

    Else if `solver="PPA"`, the function solves the following Fused Gromov-Wasserstein
    optimization problem using Proximal Point Algorithm [51]:

    .. math::
        \mathbf{FGW} = \mathop{\min}_\mathbf{T} \quad (1 - \alpha) \langle \mathbf{T}, \mathbf{M} \rangle_F +
        \alpha \sum_{i,j,k,l} L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l}) \mathbf{T}_{i,j} \mathbf{T}_{k,l}

        s.t. \ \mathbf{T} \mathbf{1} &= \mathbf{p}

             \mathbf{T}^T \mathbf{1} &= \mathbf{q}

             \mathbf{T} &\geq 0
    Where :

    - :math:`\mathbf{M}`: metric cost matrix between features across domains
    - :math:`\mathbf{C_1}`: Metric cost matrix in the source space
    - :math:`\mathbf{C_2}`: Metric cost matrix in the target space
    - :math:`\mathbf{p}`: distribution in the source space
    - :math:`\mathbf{q}`: distribution in the target space
    - `L`: loss function to account for the misfit between the similarity and feature matrices
    - `H`: entropy
    - :math:`\alpha`: trade-off parameter

    .. note:: If the inner solver `ot.sinkhorn` did not convergence, the
        optimal coupling :math:`\mathbf{T}` returned by this function does not
        necessarily satisfy the marginal constraints
        :math:`\mathbf{T}\mathbf{1}=\mathbf{p}` and
        :math:`\mathbf{T}^T\mathbf{1}=\mathbf{q}`. So the returned
        Fused Gromov-Wasserstein loss does not necessarily satisfy distance
        properties and may be negative.

    Parameters
    ----------
    M : array-like, shape (ns, nt)
        Metric cost matrix between features across domains
    C1 : array-like, shape (ns, ns)
        Metric cost matrix in the source space
    C2 : array-like, shape (nt, nt)
        Metric cost matrix in the target space
    p : array-like, shape (ns,), optional
        Distribution in the source space.
        If let to its default value None, uniform distribution is taken.
    q : array-like, shape (nt,), optional
        Distribution in the target space.
        If let to its default value None, uniform distribution is taken.
    loss_fun :  string, optional
        Loss function used for the solver either 'square_loss' or 'kl_loss'
    epsilon : float, optional
        Regularization term >0
    symmetric : bool, optional
        Either C1 and C2 are to be assumed symmetric or not.
        If let to its default None value, a symmetry test will be conducted.
        Else if set to True (resp. False), C1 and C2 will be assumed symmetric (resp. asymetric).
    alpha : float, optional
        Trade-off parameter (0 < alpha < 1)
    G0: array-like, shape (ns,nt), optional
        If None the initial transport plan of the solver is pq^T.
        Otherwise G0 will be used as initial transport of the solver. G0 is not
        required to satisfy marginal constraints but we strongly recommand it
        to correcly estimate the GW distance.
    max_iter : int, optional
        Max number of iterations
    tol : float, optional
        Stop threshold on error (>0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        Record log if True.

    Returns
    -------
    fgw_dist : float
        Fused Gromov-Wasserstein distance

    References
    ----------
    .. [12] Gabriel Peyré, Marco Cuturi, and Justin Solomon,
        "Gromov-Wasserstein averaging of kernel and distance matrices."
        International Conference on Machine Learning (ICML). 2016.

    .. [51] Xu, H., Luo, D., Zha, H., & Duke, L. C. (2019). Gromov-wasserstein
        learning for graph matching and node embedding. In International
        Conference on Machine Learning (ICML), 2019.

    .. [24] Vayer Titouan, Chapel Laetitia, Flamary Rémi, Tavenard Romain
        and Courty Nicolas "Optimal Transport for structured data with
        application on graphs", International Conference on Machine Learning
        (ICML). 2019.

    """
    T, logv = entropic_fused_gromov_wasserstein(
        M, C1, C2, p, q, loss_fun, epsilon, symmetric, alpha, G0, max_iter,
        tol, solver, warmstart, verbose, log=True, **kwargs)

    logv['T'] = T

    if log:
        return logv['fgw_dist'], logv
    else:
        return logv['fgw_dist']


def entropic_fused_gromov_barycenters(
        N, Ys, Cs, ps=None, p=None, lambdas=None, loss_fun='square_loss',
        epsilon=0.1, symmetric=True, alpha=0.5, max_iter=1000, tol=1e-9,
        warmstartT=False, verbose=False, log=False, init_C=None, init_Y=None,
        random_state=None, **kwargs):
    r"""
    Returns the Fused Gromov-Wasserstein barycenters of `S` measurable networks with node features :math:`(\mathbf{C}_s, \mathbf{Y}_s, \mathbf{p}_s)_{1 \leq s \leq S}`
    estimated using Fused Gromov-Wasserstein transports from Sinkhorn projections.

    The function solves the following optimization problem:

    .. math::

        \mathbf{C}, \mathbf{Y} = \mathop{\arg \min}_{\mathbf{C}\in \mathbb{R}^{N \times N}, \mathbf{Y}\in \mathbb{Y}^{N \times d}} \quad \sum_s \lambda_s \mathrm{FGW}_{\alpha}(\mathbf{C}, \mathbf{C}_s, \mathbf{Y}, \mathbf{Y}_s, \mathbf{p}, \mathbf{p}_s)

    Where :

    - :math:`\mathbf{Y}_s`: feature matrix
    - :math:`\mathbf{C}_s`: metric cost matrix
    - :math:`\mathbf{p}_s`: distribution

    Parameters
    ----------
    N : int
        Size of the targeted barycenter
    Ys: list of array-like, each element has shape (ns,d)
        Features of all samples
    Cs : list of S array-like of shape (ns,ns)
        Metric cost matrices
    ps : list of S array-like of shape (ns,), optional
        Sample weights in the `S` spaces.
        If let to its default value None, uniform distributions are taken.
    p : array-like, shape (N,), optional
        Weights in the targeted barycenter.
        If let to its default value None, uniform distribution is taken.
    lambdas : list of float, optional
        List of the `S` spaces' weights.
        If let to its default value None, uniform weights are taken.
    loss_fun : callable, optional
        tensor-matrix multiplication function based on specific loss function
    epsilon : float, optional
        Regularization term >0
    symmetric : bool, optional.
        Either structures are to be assumed symmetric or not. Default value is True.
        Else if set to True (resp. False), C1 and C2 will be assumed symmetric (resp. asymmetric).
    alpha : float, optional
        Trade-off parameter (0 < alpha < 1)
    max_iter : int, optional
        Max number of iterations
    tol : float, optional
        Stop threshold on error (>0)
    warmstartT: bool, optional
        Either to perform warmstart of transport plans in the successive
        fused gromov-wasserstein transport problems.
    verbose : bool, optional
        Print information along iterations.
    log : bool, optional
        Record log if True.
    init_C : bool | array-like, shape (N, N)
        Random initial value for the :math:`\mathbf{C}` matrix provided by user.
    init_Y : array-like, shape (N,d), optional
        Initialization for the barycenters' features. If not set a
        random init is used.
    random_state : int or RandomState instance, optional
        Fix the seed for reproducibility
    **kwargs: dict
        parameters can be directly passed to the `ot.entropic_fused_gromov_wasserstein` solver.

    Returns
    -------
    Y : array-like, shape (`N`, `d`)
        Feature matrix in the barycenter space (permutated arbitrarily)
    C : array-like, shape (`N`, `N`)
        Similarity matrix in the barycenter space (permutated as Y's rows)
    log : dict
        Log dictionary of error during iterations. Return only if `log=True` in parameters.

    References
    ----------
    .. [12] Gabriel Peyré, Marco Cuturi, and Justin Solomon,
        "Gromov-Wasserstein averaging of kernel and distance matrices."
        International Conference on Machine Learning (ICML). 2016.

    .. [24] Vayer Titouan, Chapel Laetitia, Flamary Rémi, Tavenard Romain
        and Courty Nicolas
        "Optimal Transport for structured data with application on graphs"
        International Conference on Machine Learning (ICML). 2019.
    """
    Cs = list_to_array(*Cs)
    Ys = list_to_array(*Ys)
    arr = [*Cs, *Ys]
    if ps is not None:
        arr += list_to_array(*ps)
    else:
        ps = [unif(C.shape[0], type_as=C) for C in Cs]
    if p is not None:
        arr.append(list_to_array(p))
    else:
        p = unif(N, type_as=Cs[0])

    nx = get_backend(*arr)
    S = len(Cs)
    if lambdas is None:
        lambdas = [1. / S] * S

    d = Ys[0].shape[1]  # dimension on the node features

    # Initialization of C : random SPD matrix (if not provided by user)
    if init_C is None:
        generator = check_random_state(random_state)
        xalea = generator.randn(N, 2)
        C = dist(xalea, xalea)
        C /= C.max()
        C = nx.from_numpy(C, type_as=p)
    else:
        C = init_C

    # Initialization of Y
    if init_Y is None:
        Y = nx.zeros((N, d), type_as=ps[0])
    else:
        Y = init_Y

    T = [nx.outer(p_, p) for p_ in ps]

    Ms = [dist(Ys[s], Y) for s in range(len(Ys))]

    cpt = 0
    err = 1

    err_feature = 1
    err_structure = 1

    if warmstartT:
        T = [None] * S

    if log:
        log_ = {}
        log_['err_feature'] = []
        log_['err_structure'] = []
        log_['Ts_iter'] = []

    while (err > tol) and (cpt < max_iter):
        Cprev = C
        Yprev = Y

        if warmstartT:
            T = [entropic_fused_gromov_wasserstein(
                Ms[s], Cs[s], C, ps[s], p, loss_fun, epsilon, symmetric, alpha,
                None, max_iter, 1e-4, verbose=verbose, log=False, **kwargs) for s in range(S)]

        else:
            T = [entropic_fused_gromov_wasserstein(
                Ms[s], Cs[s], C, ps[s], p, loss_fun, epsilon, symmetric, alpha,
                None, max_iter, 1e-4, verbose=verbose, log=False, **kwargs) for s in range(S)]

        if loss_fun == 'square_loss':
            C = update_square_loss(p, lambdas, T, Cs)

        elif loss_fun == 'kl_loss':
            C = update_kl_loss(p, lambdas, T, Cs)

        Ys_temp = [y.T for y in Ys]
        T_temp = [Ts.T for Ts in T]
        Y = update_feature_matrix(lambdas, Ys_temp, T_temp, p)
        Ms = [dist(Ys[s], Y) for s in range(len(Ys))]

        if cpt % 10 == 0:
            # we can speed up the process by checking for the error only all
            # the 10th iterations
            err_feature = nx.norm(Y - nx.reshape(Yprev, (N, d)))
            err_structure = nx.norm(C - Cprev)
            if log:
                log_['err_feature'].append(err_feature)
                log_['err_structure'].append(err_structure)
                log_['Ts_iter'].append(T)

            if verbose:
                if cpt % 200 == 0:
                    print('{:5s}|{:12s}'.format(
                        'It.', 'Err') + '\n' + '-' * 19)
                print('{:5d}|{:8e}|'.format(cpt, err_structure))
                print('{:5d}|{:8e}|'.format(cpt, err_feature))

        cpt += 1
        print('Y type:', type(Y))
    if log:
        log_['T'] = T  # from target to Ys
        log_['p'] = p
        log_['Ms'] = Ms

    if log:
        return Y, C, log_
    else:
        return Y, C