summaryrefslogtreecommitdiff
path: root/ot/gromov/_bregman.py
blob: aa25f1f3fac027405850fb9a649ffa2ec5b8e468 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
# -*- coding: utf-8 -*-
"""
Bregman projections solvers for entropic Gromov-Wasserstein
"""

# Author: Erwan Vautier <erwan.vautier@gmail.com>
#         Nicolas Courty <ncourty@irisa.fr>
#         Rémi Flamary <remi.flamary@unice.fr>
#         Titouan Vayer <titouan.vayer@irisa.fr>
#         Cédric Vincent-Cuaz <cedvincentcuaz@gmail.com>
#
# License: MIT License

from ..bregman import sinkhorn
from ..utils import dist, list_to_array, check_random_state
from ..backend import get_backend

from ._utils import init_matrix, gwloss, gwggrad
from ._utils import update_square_loss, update_kl_loss


def entropic_gromov_wasserstein(C1, C2, p, q, loss_fun, epsilon, symmetric=None, G0=None,
                                max_iter=1000, tol=1e-9, verbose=False, log=False):
    r"""
    Returns the gromov-wasserstein transport between :math:`(\mathbf{C_1}, \mathbf{p})` and :math:`(\mathbf{C_2}, \mathbf{q})`

    The function solves the following optimization problem:

    .. math::
        \mathbf{GW} = \mathop{\arg\min}_\mathbf{T} \quad \sum_{i,j,k,l} L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l}) \mathbf{T}_{i,j} \mathbf{T}_{k,l} - \epsilon(H(\mathbf{T}))

        s.t. \ \mathbf{T} \mathbf{1} &= \mathbf{p}

             \mathbf{T}^T \mathbf{1} &= \mathbf{q}

             \mathbf{T} &\geq 0

    Where :

    - :math:`\mathbf{C_1}`: Metric cost matrix in the source space
    - :math:`\mathbf{C_2}`: Metric cost matrix in the target space
    - :math:`\mathbf{p}`: distribution in the source space
    - :math:`\mathbf{q}`: distribution in the target space
    - `L`: loss function to account for the misfit between the similarity matrices
    - `H`: entropy

    .. note:: If the inner solver `ot.sinkhorn` did not convergence, the
        optimal coupling :math:`\mathbf{T}` returned by this function does not
        necessarily satisfy the marginal constraints
        :math:`\mathbf{T}\mathbf{1}=\mathbf{p}` and
        :math:`\mathbf{T}^T\mathbf{1}=\mathbf{q}`. So the returned
        Gromov-Wasserstein loss does not necessarily satisfy distance
        properties and may be negative.

    Parameters
    ----------
    C1 : array-like, shape (ns, ns)
        Metric cost matrix in the source space
    C2 : array-like, shape (nt, nt)
        Metric cost matrix in the target space
    p :  array-like, shape (ns,)
        Distribution in the source space
    q :  array-like, shape (nt,)
        Distribution in the target space
    loss_fun :  string
        Loss function used for the solver either 'square_loss' or 'kl_loss'
    epsilon : float
        Regularization term >0
    symmetric : bool, optional
        Either C1 and C2 are to be assumed symmetric or not.
        If let to its default None value, a symmetry test will be conducted.
        Else if set to True (resp. False), C1 and C2 will be assumed symmetric (resp. asymmetric).
    G0: array-like, shape (ns,nt), optional
        If None the initial transport plan of the solver is pq^T.
        Otherwise G0 must satisfy marginal constraints and will be used as initial transport of the solver.
    max_iter : int, optional
        Max number of iterations
    tol : float, optional
        Stop threshold on error (>0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        Record log if True.

    Returns
    -------
    T : array-like, shape (`ns`, `nt`)
        Optimal coupling between the two spaces

    References
    ----------
    .. [12] Gabriel Peyré, Marco Cuturi, and Justin Solomon,
        "Gromov-Wasserstein averaging of kernel and distance matrices."
        International Conference on Machine Learning (ICML). 2016.

    .. [47] Chowdhury, S., & Mémoli, F. (2019). The gromov–wasserstein
        distance between networks and stable network invariants.
        Information and Inference: A Journal of the IMA, 8(4), 757-787.
    """
    C1, C2, p, q = list_to_array(C1, C2, p, q)
    if G0 is None:
        nx = get_backend(p, q, C1, C2)
        G0 = nx.outer(p, q)
    else:
        nx = get_backend(p, q, C1, C2, G0)
    T = G0
    constC, hC1, hC2 = init_matrix(C1, C2, p, q, loss_fun, nx)
    if symmetric is None:
        symmetric = nx.allclose(C1, C1.T, atol=1e-10) and nx.allclose(C2, C2.T, atol=1e-10)
    if not symmetric:
        constCt, hC1t, hC2t = init_matrix(C1.T, C2.T, p, q, loss_fun, nx)
    cpt = 0
    err = 1

    if log:
        log = {'err': []}

    while (err > tol and cpt < max_iter):

        Tprev = T

        # compute the gradient
        if symmetric:
            tens = gwggrad(constC, hC1, hC2, T, nx)
        else:
            tens = 0.5 * (gwggrad(constC, hC1, hC2, T, nx) + gwggrad(constCt, hC1t, hC2t, T, nx))
        T = sinkhorn(p, q, tens, epsilon, method='sinkhorn')

        if cpt % 10 == 0:
            # we can speed up the process by checking for the error only all
            # the 10th iterations
            err = nx.norm(T - Tprev)

            if log:
                log['err'].append(err)

            if verbose:
                if cpt % 200 == 0:
                    print('{:5s}|{:12s}'.format(
                        'It.', 'Err') + '\n' + '-' * 19)
                print('{:5d}|{:8e}|'.format(cpt, err))

        cpt += 1

    if log:
        log['gw_dist'] = gwloss(constC, hC1, hC2, T, nx)
        return T, log
    else:
        return T


def entropic_gromov_wasserstein2(C1, C2, p, q, loss_fun, epsilon, symmetric=None, G0=None,
                                 max_iter=1000, tol=1e-9, verbose=False, log=False):
    r"""
    Returns the entropic Gromov-Wasserstein discrepancy between the two measured similarity matrices :math:`(\mathbf{C_1}, \mathbf{p})` and :math:`(\mathbf{C_2}, \mathbf{q})`

    The function solves the following optimization problem:

    .. math::
        GW = \min_\mathbf{T} \quad \sum_{i,j,k,l} L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l})
        \mathbf{T}_{i,j} \mathbf{T}_{k,l} - \epsilon(H(\mathbf{T}))

    Where :

    - :math:`\mathbf{C_1}`: Metric cost matrix in the source space
    - :math:`\mathbf{C_2}`: Metric cost matrix in the target space
    - :math:`\mathbf{p}`: distribution in the source space
    - :math:`\mathbf{q}`: distribution in the target space
    - `L`: loss function to account for the misfit between the similarity matrices
    - `H`: entropy

    .. note:: If the inner solver `ot.sinkhorn` did not convergence, the
        optimal coupling :math:`\mathbf{T}` returned by this function does not
        necessarily satisfy the marginal constraints
        :math:`\mathbf{T}\mathbf{1}=\mathbf{p}` and
        :math:`\mathbf{T}^T\mathbf{1}=\mathbf{q}`. So the returned
        Gromov-Wasserstein loss does not necessarily satisfy distance
        properties and may be negative.

    Parameters
    ----------
    C1 : array-like, shape (ns, ns)
        Metric cost matrix in the source space
    C2 : array-like, shape (nt, nt)
        Metric cost matrix in the target space
    p :  array-like, shape (ns,)
        Distribution in the source space
    q :  array-like, shape (nt,)
        Distribution in the target space
    loss_fun : str
        Loss function used for the solver either 'square_loss' or 'kl_loss'
    epsilon : float
        Regularization term >0
    symmetric : bool, optional
        Either C1 and C2 are to be assumed symmetric or not.
        If let to its default None value, a symmetry test will be conducted.
        Else if set to True (resp. False), C1 and C2 will be assumed symmetric (resp. asymmetric).
    G0: array-like, shape (ns,nt), optional
        If None the initial transport plan of the solver is pq^T.
        Otherwise G0 must satisfy marginal constraints and will be used as initial transport of the solver.
    max_iter : int, optional
        Max number of iterations
    tol : float, optional
        Stop threshold on error (>0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        Record log if True.

    Returns
    -------
    gw_dist : float
        Gromov-Wasserstein distance

    References
    ----------
    .. [12] Gabriel Peyré, Marco Cuturi, and Justin Solomon,
        "Gromov-Wasserstein averaging of kernel and distance matrices."
        International Conference on Machine Learning (ICML). 2016.

    """
    gw, logv = entropic_gromov_wasserstein(
        C1, C2, p, q, loss_fun, epsilon, symmetric, G0, max_iter, tol, verbose, log=True)

    logv['T'] = gw

    if log:
        return logv['gw_dist'], logv
    else:
        return logv['gw_dist']


def entropic_gromov_barycenters(N, Cs, ps, p, lambdas, loss_fun, epsilon, symmetric=True,
                                max_iter=1000, tol=1e-9, verbose=False, log=False, init_C=None, random_state=None):
    r"""
    Returns the gromov-wasserstein barycenters of `S` measured similarity matrices :math:`(\mathbf{C}_s)_{1 \leq s \leq S}`

    The function solves the following optimization problem:

    .. math::

        \mathbf{C} = \mathop{\arg \min}_{\mathbf{C}\in \mathbb{R}^{N \times N}} \quad \sum_s \lambda_s \mathrm{GW}(\mathbf{C}, \mathbf{C}_s, \mathbf{p}, \mathbf{p}_s)

    Where :

    - :math:`\mathbf{C}_s`: metric cost matrix
    - :math:`\mathbf{p}_s`: distribution

    Parameters
    ----------
    N : int
        Size of the targeted barycenter
    Cs : list of S array-like of shape (ns,ns)
        Metric cost matrices
    ps : list of S array-like of shape (ns,)
        Sample weights in the `S` spaces
    p : array-like, shape(N,)
        Weights in the targeted barycenter
    lambdas : list of float
        List of the `S` spaces' weights.
    loss_fun : callable
        Tensor-matrix multiplication function based on specific loss function.
    update : callable
        function(:math:`\mathbf{p}`, lambdas, :math:`\mathbf{T}`, :math:`\mathbf{Cs}`) that updates
        :math:`\mathbf{C}` according to a specific Kernel with the `S` :math:`\mathbf{T}_s` couplings
        calculated at each iteration
    epsilon : float
        Regularization term >0
    symmetric : bool, optional.
        Either structures are to be assumed symmetric or not. Default value is True.
        Else if set to True (resp. False), C1 and C2 will be assumed symmetric (resp. asymmetric).
    max_iter : int, optional
        Max number of iterations
    tol : float, optional
        Stop threshold on error (>0)
    verbose : bool, optional
        Print information along iterations.
    log : bool, optional
        Record log if True.
    init_C : bool | array-like, shape (N, N)
        Random initial value for the :math:`\mathbf{C}` matrix provided by user.
    random_state : int or RandomState instance, optional
        Fix the seed for reproducibility

    Returns
    -------
    C : array-like, shape (`N`, `N`)
        Similarity matrix in the barycenter space (permutated arbitrarily)
    log : dict
        Log dictionary of error during iterations. Return only if `log=True` in parameters.

    References
    ----------
    .. [12] Gabriel Peyré, Marco Cuturi, and Justin Solomon,
        "Gromov-Wasserstein averaging of kernel and distance matrices."
        International Conference on Machine Learning (ICML). 2016.
    """
    Cs = list_to_array(*Cs)
    ps = list_to_array(*ps)
    p = list_to_array(p)
    nx = get_backend(*Cs, *ps, p)

    S = len(Cs)

    # Initialization of C : random SPD matrix (if not provided by user)
    if init_C is None:
        generator = check_random_state(random_state)
        xalea = generator.randn(N, 2)
        C = dist(xalea, xalea)
        C /= C.max()
        C = nx.from_numpy(C, type_as=p)
    else:
        C = init_C

    cpt = 0
    err = 1

    error = []

    while (err > tol) and (cpt < max_iter):
        Cprev = C

        T = [entropic_gromov_wasserstein(Cs[s], C, ps[s], p, loss_fun, epsilon, symmetric, None,
                                         max_iter, 1e-4, verbose, log=False) for s in range(S)]
        if loss_fun == 'square_loss':
            C = update_square_loss(p, lambdas, T, Cs)

        elif loss_fun == 'kl_loss':
            C = update_kl_loss(p, lambdas, T, Cs)

        if cpt % 10 == 0:
            # we can speed up the process by checking for the error only all
            # the 10th iterations
            err = nx.norm(C - Cprev)
            error.append(err)

            if verbose:
                if cpt % 200 == 0:
                    print('{:5s}|{:12s}'.format(
                        'It.', 'Err') + '\n' + '-' * 19)
                print('{:5d}|{:8e}|'.format(cpt, err))

        cpt += 1

    if log:
        return C, {"err": error}
    else:
        return C