summaryrefslogtreecommitdiff
path: root/ot/lp/__init__.py
blob: decff295f57fa7b425473af1d74f3b55767f96d3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
# -*- coding: utf-8 -*-
"""
Solvers for the original linear program OT problem
"""

# Author: Remi Flamary <remi.flamary@unice.fr>
#
# License: MIT License

import multiprocessing

import numpy as np
from scipy.sparse import coo_matrix

from .import cvx

# import compiled emd
from .emd_wrap import emd_c, check_result, emd_1d_sorted
from ..utils import parmap
from .cvx import barycenter
from ..utils import dist

__all__=['emd', 'emd2', 'barycenter', 'free_support_barycenter', 'cvx',
         'emd_1d', 'emd2_1d']


def emd(a, b, M, numItermax=100000, log=False):
    """Solves the Earth Movers distance problem and returns the OT matrix


    .. math::
        \gamma = arg\min_\gamma <\gamma,M>_F

        s.t. \gamma 1 = a
             \gamma^T 1= b
             \gamma\geq 0
    where :

    - M is the metric cost matrix
    - a and b are the sample weights

    Uses the algorithm proposed in [1]_

    Parameters
    ----------
    a : (ns,) ndarray, float64
        Source histogram (uniform weigth if empty list)
    b : (nt,) ndarray, float64
        Target histogram (uniform weigth if empty list)
    M : (ns,nt) ndarray, float64
        loss matrix
    numItermax : int, optional (default=100000)
        The maximum number of iterations before stopping the optimization
        algorithm if it has not converged.
    log: boolean, optional (default=False)
        If True, returns a dictionary containing the cost and dual
        variables. Otherwise returns only the optimal transportation matrix.

    Returns
    -------
    gamma: (ns x nt) ndarray
        Optimal transportation matrix for the given parameters
    log: dict
        If input log is true, a dictionary containing the cost and dual
        variables and exit status


    Examples
    --------

    Simple example with obvious solution. The function emd accepts lists and
    perform automatic conversion to numpy arrays

    >>> import ot
    >>> a=[.5,.5]
    >>> b=[.5,.5]
    >>> M=[[0.,1.],[1.,0.]]
    >>> ot.emd(a,b,M)
    array([[ 0.5,  0. ],
           [ 0. ,  0.5]])

    References
    ----------

    .. [1] Bonneel, N., Van De Panne, M., Paris, S., & Heidrich, W.
        (2011, December).  Displacement interpolation using Lagrangian mass
        transport. In ACM Transactions on Graphics (TOG) (Vol. 30, No. 6, p.
        158). ACM.

    See Also
    --------
    ot.bregman.sinkhorn : Entropic regularized OT
    ot.optim.cg : General regularized OT"""

    a = np.asarray(a, dtype=np.float64)
    b = np.asarray(b, dtype=np.float64)
    M = np.asarray(M, dtype=np.float64)

    # if empty array given then use uniform distributions
    if len(a) == 0:
        a = np.ones((M.shape[0],), dtype=np.float64) / M.shape[0]
    if len(b) == 0:
        b = np.ones((M.shape[1],), dtype=np.float64) / M.shape[1]

    G, cost, u, v, result_code = emd_c(a, b, M, numItermax)
    result_code_string = check_result(result_code)
    if log:
        log = {}
        log['cost'] = cost
        log['u'] = u
        log['v'] = v
        log['warning'] = result_code_string
        log['result_code'] = result_code
        return G, log
    return G


def emd2(a, b, M, processes=multiprocessing.cpu_count(),
         numItermax=100000, log=False, return_matrix=False):
    """Solves the Earth Movers distance problem and returns the loss

    .. math::
        \gamma = arg\min_\gamma <\gamma,M>_F

        s.t. \gamma 1 = a
             \gamma^T 1= b
             \gamma\geq 0
    where :

    - M is the metric cost matrix
    - a and b are the sample weights

    Uses the algorithm proposed in [1]_

    Parameters
    ----------
    a : (ns,) ndarray, float64
        Source histogram (uniform weigth if empty list)
    b : (nt,) ndarray, float64
        Target histogram (uniform weigth if empty list)
    M : (ns,nt) ndarray, float64
        loss matrix
    numItermax : int, optional (default=100000)
        The maximum number of iterations before stopping the optimization
        algorithm if it has not converged.
    log: boolean, optional (default=False)
        If True, returns a dictionary containing the cost and dual
        variables. Otherwise returns only the optimal transportation cost.
    return_matrix: boolean, optional (default=False)
        If True, returns the optimal transportation matrix in the log.

    Returns
    -------
    gamma: (ns x nt) ndarray
        Optimal transportation matrix for the given parameters
    log: dict
        If input log is true, a dictionary containing the cost and dual
        variables and exit status


    Examples
    --------

    Simple example with obvious solution. The function emd accepts lists and
    perform automatic conversion to numpy arrays


    >>> import ot
    >>> a=[.5,.5]
    >>> b=[.5,.5]
    >>> M=[[0.,1.],[1.,0.]]
    >>> ot.emd2(a,b,M)
    0.0

    References
    ----------

    .. [1] Bonneel, N., Van De Panne, M., Paris, S., & Heidrich, W.
        (2011, December).  Displacement interpolation using Lagrangian mass
        transport. In ACM Transactions on Graphics (TOG) (Vol. 30, No. 6, p.
        158). ACM.

    See Also
    --------
    ot.bregman.sinkhorn : Entropic regularized OT
    ot.optim.cg : General regularized OT"""

    a = np.asarray(a, dtype=np.float64)
    b = np.asarray(b, dtype=np.float64)
    M = np.asarray(M, dtype=np.float64)

    # if empty array given then use uniform distributions
    if len(a) == 0:
        a = np.ones((M.shape[0],), dtype=np.float64) / M.shape[0]
    if len(b) == 0:
        b = np.ones((M.shape[1],), dtype=np.float64) / M.shape[1]

    if log or return_matrix:
        def f(b):
            G, cost, u, v, resultCode = emd_c(a, b, M, numItermax)
            result_code_string = check_result(resultCode)
            log = {}
            if return_matrix:
                log['G'] = G
            log['u'] = u
            log['v'] = v
            log['warning'] = result_code_string
            log['result_code'] = resultCode
            return [cost, log]
    else:
        def f(b):
            G, cost, u, v, result_code = emd_c(a, b, M, numItermax)
            check_result(result_code)
            return cost

    if len(b.shape) == 1:
        return f(b)
    nb = b.shape[1]

    res = parmap(f, [b[:, i] for i in range(nb)], processes)
    return res



def free_support_barycenter(measures_locations, measures_weights, X_init, b=None, weights=None, numItermax=100, stopThr=1e-7, verbose=False, log=None):
    """
    Solves the free support (locations of the barycenters are optimized, not the weights) Wasserstein barycenter problem (i.e. the weighted Frechet mean for the 2-Wasserstein distance)

    The function solves the Wasserstein barycenter problem when the barycenter measure is constrained to be supported on k atoms.
    This problem is considered in [1] (Algorithm 2). There are two differences with the following codes:
    - we do not optimize over the weights
    - we do not do line search for the locations updates, we use i.e. theta = 1 in [1] (Algorithm 2). This can be seen as a discrete implementation of the fixed-point algorithm of [2] proposed in the continuous setting.

    Parameters
    ----------
    measures_locations : list of (k_i,d) np.ndarray
        The discrete support of a measure supported on k_i locations of a d-dimensional space (k_i can be different for each element of the list)
    measures_weights : list of (k_i,) np.ndarray
        Numpy arrays where each numpy array has k_i non-negatives values summing to one representing the weights of each discrete input measure

    X_init : (k,d) np.ndarray
        Initialization of the support locations (on k atoms) of the barycenter
    b : (k,) np.ndarray
        Initialization of the weights of the barycenter (non-negatives, sum to 1)
    weights : (k,) np.ndarray
        Initialization of the coefficients of the barycenter (non-negatives, sum to 1)

    numItermax : int, optional
        Max number of iterations
    stopThr : float, optional
        Stop threshol on error (>0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        record log if True

    Returns
    -------
    X : (k,d) np.ndarray
        Support locations (on k atoms) of the barycenter

    References
    ----------

    .. [1] Cuturi, Marco, and Arnaud Doucet. "Fast computation of Wasserstein barycenters." International Conference on Machine Learning. 2014.

    .. [2]  Álvarez-Esteban, Pedro C., et al. "A fixed-point approach to barycenters in Wasserstein space." Journal of Mathematical Analysis and Applications 441.2 (2016): 744-762.

    """

    iter_count = 0

    N = len(measures_locations)
    k = X_init.shape[0]
    d = X_init.shape[1]
    if b is None:
        b = np.ones((k,))/k
    if weights is None:
        weights = np.ones((N,)) / N

    X = X_init

    log_dict = {}
    displacement_square_norms = []

    displacement_square_norm = stopThr + 1.

    while ( displacement_square_norm > stopThr and iter_count < numItermax ):

        T_sum = np.zeros((k, d))

        for (measure_locations_i, measure_weights_i, weight_i) in zip(measures_locations, measures_weights, weights.tolist()):

            M_i = dist(X, measure_locations_i)
            T_i = emd(b, measure_weights_i, M_i)
            T_sum = T_sum + weight_i * np.reshape(1. / b, (-1, 1)) * np.matmul(T_i, measure_locations_i)

        displacement_square_norm = np.sum(np.square(T_sum-X))
        if log:
            displacement_square_norms.append(displacement_square_norm)

        X = T_sum

        if verbose:
            print('iteration %d, displacement_square_norm=%f\n', iter_count, displacement_square_norm)

        iter_count += 1

    if log:
        log_dict['displacement_square_norms'] = displacement_square_norms
        return X, log_dict
    else:
        return X


def emd_1d(a, b, x_a, x_b, metric='sqeuclidean', dense=True, log=False):
    """Solves the Earth Movers distance problem between 1d measures and returns
    the OT matrix

    """
    a = np.asarray(a, dtype=np.float64)
    b = np.asarray(b, dtype=np.float64)
    x_a = np.asarray(x_a, dtype=np.float64)
    x_b = np.asarray(x_b, dtype=np.float64)

    assert (x_a.ndim == 1 or x_a.ndim == 2 and x_a.shape[1] == 1), \
        "emd_1d should only be used with monodimensional data"
    assert (x_b.ndim == 1 or x_b.ndim == 2 and x_b.shape[1] == 1), \
        "emd_1d should only be used with monodimensional data"

    # if empty array given then use uniform distributions
    if len(a) == 0:
        a = np.ones((x_a.shape[0],), dtype=np.float64) / x_a.shape[0]
    if len(b) == 0:
        b = np.ones((x_b.shape[0],), dtype=np.float64) / x_b.shape[0]

    x_a_1d = x_a.reshape((-1, ))
    x_b_1d = x_b.reshape((-1, ))
    perm_a = np.argsort(x_a_1d)
    perm_b = np.argsort(x_b_1d)

    G_sorted, indices, cost = emd_1d_sorted(a, b,
                                            x_a_1d[perm_a], x_b_1d[perm_b],
                                            metric=metric)
    G = coo_matrix((G_sorted, (perm_a[indices[:, 0]], perm_b[indices[:, 1]])),
                   shape=(a.shape[0], b.shape[0]))
    if dense:
        G = G.todense()
    if log:
        log = {}
        log['cost'] = cost
        return G, log
    return G


def emd2_1d(a, b, x_a, x_b, metric='sqeuclidean', dense=True, log=False):
    """Solves the Earth Movers distance problem between 1d measures and returns
    the loss

    """
    # If we do not return G (log==False), then we should not to cast it to dense
    # (useless overhead)
    G, log_emd = emd_1d(a=a, b=b, x_a=x_a, x_b=x_b, metric=metric,
                        dense=dense and log, log=True)
    cost = log_emd['cost']
    if log:
        log_emd = {'G': G}
        return cost, log_emd
    return cost