summaryrefslogtreecommitdiff
path: root/ot/lp/emd_wrap.pyx
blob: 46794ab4f655b8037eb98e5c5c2383db74830018 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# -*- coding: utf-8 -*-
"""
Created on Thu Sep 11 08:42:08 2014

@author: rflamary
"""
import numpy as np
cimport numpy as np

cimport cython



cdef extern from "EMD.h":
    void EMD_wrap(int n1,int n2, double *X, double *Y,double *D, double *G, double *cost)



@cython.boundscheck(False)
@cython.wraparound(False)
def emd_c( np.ndarray[double, ndim=1, mode="c"] a,np.ndarray[double, ndim=1, mode="c"]  b,np.ndarray[double, ndim=2, mode="c"]  M):
    """
        Solves the Earth Movers distance problem and returns the optimal transport matrix
        
        gamm=emd(a,b,M)
    
    .. math::
        \gamma = arg\min_\gamma <\gamma,M>_F 
        
        s.t. \gamma 1 = a
        
             \gamma^T 1= b 
             
             \gamma\geq 0
    where :
    
    - M is the metric cost matrix
    - a and b are the sample weights
             
    Parameters
    ----------
    a : (ns,) ndarray, float64
        source histogram 
    b : (nt,) ndarray, float64
        target histogram
    M : (ns,nt) ndarray, float64
        loss matrix        
  
    
    Returns
    -------
    gamma: (ns x nt) ndarray
        Optimal transportation matrix for the given parameters
 
    """
    cdef int n1= M.shape[0]
    cdef int n2= M.shape[1]

    cdef float cost=0
    cdef np.ndarray[double, ndim=2, mode="c"] G=np.zeros([n1, n2])
    
    if not len(a):
        a=np.ones((n1,))/n1

    if not len(b):
        b=np.ones((n2,))/n2

    # calling the function
    EMD_wrap(n1,n2,<double*> a.data,<double*> b.data,<double*> M.data,<double*> G.data,<double*> &cost)

    return G

@cython.boundscheck(False)
@cython.wraparound(False)
def emd2_c( np.ndarray[double, ndim=1, mode="c"] a,np.ndarray[double, ndim=1, mode="c"]  b,np.ndarray[double, ndim=2, mode="c"]  M):
    """
        Solves the Earth Movers distance problem and returns the optimal transport loss
        
        gamm=emd(a,b,M)
    
    .. math::
        \gamma = arg\min_\gamma <\gamma,M>_F 
        
        s.t. \gamma 1 = a
        
             \gamma^T 1= b 
             
             \gamma\geq 0
    where :
    
    - M is the metric cost matrix
    - a and b are the sample weights
             
    Parameters
    ----------
    a : (ns,) ndarray, float64
        source histogram 
    b : (nt,) ndarray, float64
        target histogram
    M : (ns,nt) ndarray, float64
        loss matrix        
  
    
    Returns
    -------
    gamma: (ns x nt) ndarray
        Optimal transportation matrix for the given parameters
 
    """
    cdef int n1= M.shape[0]
    cdef int n2= M.shape[1]

    cdef float cost=0
    cdef np.ndarray[double, ndim=2, mode="c"] G=np.zeros([n1, n2])
    
    if not len(a):
        a=np.ones((n1,))/n1

    if not len(b):
        b=np.ones((n2,))/n2

    # calling the function
    EMD_wrap(n1,n2,<double*> a.data,<double*> b.data,<double*> M.data,<double*> G.data,<double*> &cost)
    
    cost=0
    for i in range(n1):
        for j in range(n2):
            cost+=G[i,j]*M[i,j]

    return cost