summaryrefslogtreecommitdiff
path: root/ot/lp/emd_wrap.pyx
blob: e5cec89c63ab78dc9cd5aa02bf75f11b88392720 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# -*- coding: utf-8 -*-
"""
Cython linker with C solver
"""

# Author: Remi Flamary <remi.flamary@unice.fr>
#
# License: MIT License

import numpy as np
cimport numpy as np

from ..utils import dist

cimport cython
cimport libc.math as math
from libc.stdint cimport uint64_t

import warnings


cdef extern from "EMD.h":
    int EMD_wrap(int n1,int n2, double *X, double *Y,double *D, double *G, double* alpha, double* beta, double *cost, uint64_t maxIter) nogil
    int EMD_wrap_omp(int n1,int n2, double *X, double *Y,double *D, double *G, double* alpha, double* beta, double *cost, uint64_t maxIter, int numThreads) nogil
    cdef enum ProblemType: INFEASIBLE, OPTIMAL, UNBOUNDED, MAX_ITER_REACHED


def check_result(result_code):
    if result_code == OPTIMAL:
        return None

    if result_code == INFEASIBLE:
        message = "Problem infeasible. Check that a and b are in the simplex"
    elif result_code == UNBOUNDED:
        message = "Problem unbounded"
    elif result_code == MAX_ITER_REACHED:
        message = "numItermax reached before optimality. Try to increase numItermax."
    warnings.warn(message)
    return message
 
@cython.boundscheck(False)
@cython.wraparound(False)
def emd_c(np.ndarray[double, ndim=1, mode="c"] a, np.ndarray[double, ndim=1, mode="c"]  b, np.ndarray[double, ndim=2, mode="c"]  M, uint64_t max_iter, int numThreads):
    """
        Solves the Earth Movers distance problem and returns the optimal transport matrix

        gamm=emd(a,b,M)

    .. math::
        \gamma = arg\min_\gamma <\gamma,M>_F

        s.t. \gamma 1 = a

             \gamma^T 1= b

             \gamma\geq 0
    where :

    - M is the metric cost matrix
    - a and b are the sample weights

    .. warning::
        Note that the M matrix needs to be a C-order :py.cls:`numpy.array`

    .. warning::
        The C++ solver discards all samples in the distributions with 
        zeros weights. This means that while the primal variable (transport 
        matrix) is exact, the solver only returns feasible dual potentials
        on the samples with weights different from zero. 

    Parameters
    ----------
    a : (ns,) numpy.ndarray, float64
        source histogram
    b : (nt,) numpy.ndarray, float64
        target histogram
    M : (ns,nt) numpy.ndarray, float64
        loss matrix
    max_iter : uint64_t
        The maximum number of iterations before stopping the optimization
        algorithm if it has not converged.

    Returns
    -------
    gamma: (ns x nt) numpy.ndarray
        Optimal transportation matrix for the given parameters

    """
    cdef int n1= M.shape[0]
    cdef int n2= M.shape[1]
    cdef int nmax=n1+n2-1
    cdef int result_code = 0
    cdef int nG=0

    cdef double cost=0
    cdef np.ndarray[double, ndim=1, mode="c"] alpha=np.zeros(n1)
    cdef np.ndarray[double, ndim=1, mode="c"] beta=np.zeros(n2)

    cdef np.ndarray[double, ndim=2, mode="c"] G=np.zeros([0, 0])

    cdef np.ndarray[double, ndim=1, mode="c"] Gv=np.zeros(0)

    if not len(a):
        a=np.ones((n1,))/n1

    if not len(b):
        b=np.ones((n2,))/n2

    # init OT matrix
    G=np.zeros([n1, n2])

    # calling the function
    with nogil:
        if numThreads == 1:
            result_code = EMD_wrap(n1, n2, <double*> a.data, <double*> b.data, <double*> M.data, <double*> G.data, <double*> alpha.data, <double*> beta.data, <double*> &cost, max_iter)
        else:
            result_code = EMD_wrap_omp(n1, n2, <double*> a.data, <double*> b.data, <double*> M.data, <double*> G.data, <double*> alpha.data, <double*> beta.data, <double*> &cost, max_iter, numThreads)
    return G, cost, alpha, beta, result_code


@cython.boundscheck(False)
@cython.wraparound(False)
def emd_1d_sorted(np.ndarray[double, ndim=1, mode="c"] u_weights,
                  np.ndarray[double, ndim=1, mode="c"] v_weights,
                  np.ndarray[double, ndim=1, mode="c"] u,
                  np.ndarray[double, ndim=1, mode="c"] v,
                  str metric='sqeuclidean',
                  double p=1.):
    r"""
    Solves the Earth Movers distance problem between sorted 1d measures and
    returns the OT matrix and the associated cost

    Parameters
    ----------
    u_weights : (ns,) ndarray, float64
        Source histogram
    v_weights : (nt,) ndarray, float64
        Target histogram
    u : (ns,) ndarray, float64
        Source dirac locations (on the real line)
    v : (nt,) ndarray, float64
        Target dirac locations (on the real line)
    metric: str, optional (default='sqeuclidean')
        Metric to be used. Only strings listed in :func:`ot.dist` are accepted.
        Due to implementation details, this function runs faster when
        `'sqeuclidean'`, `'minkowski'`, `'cityblock'`,  or `'euclidean'` metrics
        are used.
    p: float, optional (default=1.0)
         The p-norm to apply for if metric='minkowski'

    Returns
    -------
    gamma: (n, ) ndarray, float64
        Values in the Optimal transportation matrix
    indices: (n, 2) ndarray, int64
        Indices of the values stored in gamma for the Optimal transportation
        matrix
    cost
        cost associated to the optimal transportation
    """
    cdef double cost = 0.
    cdef Py_ssize_t n = u_weights.shape[0]
    cdef Py_ssize_t m = v_weights.shape[0]

    cdef Py_ssize_t i = 0
    cdef double w_i = u_weights[0]
    cdef Py_ssize_t j = 0
    cdef double w_j = v_weights[0]

    cdef double m_ij = 0.

    cdef np.ndarray[double, ndim=1, mode="c"] G = np.zeros((n + m - 1, ),
                                                           dtype=np.float64)
    cdef np.ndarray[long long, ndim=2, mode="c"] indices = np.zeros((n + m - 1, 2),
                                                              dtype=np.int64)
    cdef Py_ssize_t cur_idx = 0
    while True:
        if metric == 'sqeuclidean':
            m_ij = (u[i] - v[j]) * (u[i] - v[j])
        elif metric == 'cityblock' or metric == 'euclidean':
            m_ij = math.fabs(u[i] - v[j])
        elif metric == 'minkowski':
            m_ij = math.pow(math.fabs(u[i] - v[j]), p)
        else:
            m_ij = dist(u[i].reshape((1, 1)), v[j].reshape((1, 1)),
                        metric=metric)[0, 0]
        if w_i < w_j or j == m - 1:
            cost += m_ij * w_i
            G[cur_idx] = w_i
            indices[cur_idx, 0] = i
            indices[cur_idx, 1] = j
            i += 1
            if i == n:
                break
            w_j -= w_i
            w_i = u_weights[i]
        else:
            cost += m_ij * w_j
            G[cur_idx] = w_j
            indices[cur_idx, 0] = i
            indices[cur_idx, 1] = j
            j += 1
            if j == m:
                break
            w_i -= w_j
            w_j = v_weights[j]
        cur_idx += 1
    cur_idx += 1
    return G[:cur_idx], indices[:cur_idx], cost