summaryrefslogtreecommitdiff
path: root/ot/lp/network_simplex_simple.h
blob: 5d9304068805cc6af061f29e6b25eaf14eab3419 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
/* -*- mode: C++; indent-tabs-mode: nil; -*-
 *
 *
 * This file has been adapted by Nicolas Bonneel (2013),
 * from network_simplex.h from LEMON, a generic C++ optimization library,
 * to implement a lightweight network simplex for mass transport, more
 * memory efficient that the original file. A previous version of this file
 * is used as part of the Displacement Interpolation project,
 * Web: http://www.cs.ubc.ca/labs/imager/tr/2011/DisplacementInterpolation/
 *
 *
 **** Original file Copyright Notice :
 *
 * Copyright (C) 2003-2010
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
 *
 * Permission to use, modify and distribute this software is granted
 * provided that this copyright notice appears in all copies. For
 * precise terms see the accompanying LICENSE file.
 *
 * This software is provided "AS IS" with no warranty of any kind,
 * express or implied, and with no claim as to its suitability for any
 * purpose.
 *
 */

#ifndef LEMON_NETWORK_SIMPLEX_SIMPLE_H
#define LEMON_NETWORK_SIMPLEX_SIMPLE_H
#define DEBUG_LVL 0

#if DEBUG_LVL>0
#include <iomanip>
#endif


#define EPSILON 2.2204460492503131e-15
#define _EPSILON 1e-8
#define MAX_DEBUG_ITER 100000


/// \ingroup min_cost_flow_algs
///
/// \file
/// \brief Network Simplex algorithm for finding a minimum cost flow.

// if your compiler has troubles with stdext or hashmaps, just comment the following line to use a slower std::map instead
//#define HASHMAP

#include <vector>
#include <limits>
#include <algorithm>
#include <cstdio>
#ifdef HASHMAP
#include <hash_map>
#else
#include <map>
#endif
#include <cmath>
//#include "core.h"
//#include "lmath.h"

//#include "sparse_array_n.h"
#include "full_bipartitegraph.h"

#define INVALIDNODE -1
#define INVALID (-1)

namespace lemon {


    template <typename T>
	class ProxyObject;

	template<typename T>
	class SparseValueVector
	{
	public:
		SparseValueVector(int n=0)
		{
		}
		void resize(int n=0){};
		T operator[](const int id) const
		{
#ifdef HASHMAP
			typename stdext::hash_map<int,T>::const_iterator it = data.find(id);
#else
			typename std::map<int,T>::const_iterator it = data.find(id);
#endif
			if (it==data.end())
				return 0;
			else
				return it->second;
		}

		ProxyObject<T> operator[](const int id)
		{
			return ProxyObject<T>( this, id );
		}

        //private:
#ifdef HASHMAP
		stdext::hash_map<int,T> data;
#else
		std::map<int,T> data;
#endif

	};

	template <typename T>
	class ProxyObject {
	public:
		ProxyObject( SparseValueVector<T> *v, int idx ){_v=v; _idx=idx;};
		ProxyObject<T> & operator=( const T &v ) {
			// If we get here, we know that operator[] was called to perform a write access,
			// so we can insert an item in the vector if needed
			if (v!=0)
				_v->data[_idx]=v;
			return *this;
		}

		operator T() {
			// If we get here, we know that operator[] was called to perform a read access,
			// so we can simply return the existing object
#ifdef HASHMAP
			typename stdext::hash_map<int,T>::iterator it = _v->data.find(_idx);
#else
			typename std::map<int,T>::iterator it = _v->data.find(_idx);
#endif
			if (it==_v->data.end())
				return 0;
			else
				return it->second;
		}

		void operator+=(T val)
		{
			if (val==0) return;
#ifdef HASHMAP
			typename stdext::hash_map<int,T>::iterator it = _v->data.find(_idx);
#else
			typename std::map<int,T>::iterator it = _v->data.find(_idx);
#endif
			if (it==_v->data.end())
				_v->data[_idx] = val;
			else
			{
				T sum = it->second + val;
				if (sum==0)
					_v->data.erase(it);
				else
					it->second = sum;
			}
		}
		void operator-=(T val)
		{
			if (val==0) return;
#ifdef HASHMAP
			typename stdext::hash_map<int,T>::iterator it = _v->data.find(_idx);
#else
			typename std::map<int,T>::iterator it = _v->data.find(_idx);
#endif
			if (it==_v->data.end())
				_v->data[_idx] = -val;
			else
			{
				T sum = it->second - val;
				if (sum==0)
					_v->data.erase(it);
				else
					it->second = sum;
			}
		}

		SparseValueVector<T> *_v;
		int _idx;
	};



    /// \addtogroup min_cost_flow_algs
    /// @{

    /// \brief Implementation of the primal Network Simplex algorithm
    /// for finding a \ref min_cost_flow "minimum cost flow".
    ///
    /// \ref NetworkSimplexSimple implements the primal Network Simplex algorithm
    /// for finding a \ref min_cost_flow "minimum cost flow"
    /// \ref amo93networkflows, \ref dantzig63linearprog,
    /// \ref kellyoneill91netsimplex.
    /// This algorithm is a highly efficient specialized version of the
    /// linear programming simplex method directly for the minimum cost
    /// flow problem.
    ///
    /// In general, %NetworkSimplexSimple is the fastest implementation available
    /// in LEMON for this problem.
    /// Moreover, it supports both directions of the supply/demand inequality
    /// constraints. For more information, see \ref SupplyType.
    ///
    /// Most of the parameters of the problem (except for the digraph)
    /// can be given using separate functions, and the algorithm can be
    /// executed using the \ref run() function. If some parameters are not
    /// specified, then default values will be used.
    ///
    /// \tparam GR The digraph type the algorithm runs on.
    /// \tparam V The number type used for flow amounts, capacity bounds
    /// and supply values in the algorithm. By default, it is \c int.
    /// \tparam C The number type used for costs and potentials in the
    /// algorithm. By default, it is the same as \c V.
    ///
    /// \warning Both number types must be signed and all input data must
    /// be integer.
    ///
    /// \note %NetworkSimplexSimple provides five different pivot rule
    /// implementations, from which the most efficient one is used
    /// by default. For more information, see \ref PivotRule.
    template <typename GR, typename V = int, typename C = V, typename NodesType = unsigned short int>
    class NetworkSimplexSimple
    {
    public:

        /// \brief Constructor.
        ///
        /// The constructor of the class.
        ///
        /// \param graph The digraph the algorithm runs on.
        /// \param arc_mixing Indicate if the arcs have to be stored in a
        /// mixed order in the internal data structure.
        /// In special cases, it could lead to better overall performance,
        /// but it is usually slower. Therefore it is disabled by default.
        NetworkSimplexSimple(const GR& graph, bool arc_mixing, int nbnodes, long long nb_arcs,int maxiters) :
        _graph(graph),  //_arc_id(graph),
        _arc_mixing(arc_mixing), _init_nb_nodes(nbnodes), _init_nb_arcs(nb_arcs),
        MAX(std::numeric_limits<Value>::max()),
        INF(std::numeric_limits<Value>::has_infinity ?
            std::numeric_limits<Value>::infinity() : MAX)
        {
            // Reset data structures
            reset();
            max_iter=maxiters;
        }

        /// The type of the flow amounts, capacity bounds and supply values
        typedef V Value;
        /// The type of the arc costs
        typedef C Cost;

    public:

        /// \brief Problem type constants for the \c run() function.
        ///
        /// Enum type containing the problem type constants that can be
        /// returned by the \ref run() function of the algorithm.
        enum ProblemType {
            /// The problem has no feasible solution (flow).
            INFEASIBLE,
            /// The problem has optimal solution (i.e. it is feasible and
            /// bounded), and the algorithm has found optimal flow and node
            /// potentials (primal and dual solutions).
            OPTIMAL,
            /// The objective function of the problem is unbounded, i.e.
            /// there is a directed cycle having negative total cost and
            /// infinite upper bound.
            UNBOUNDED,
			/// The maximum number of iteration has been reached
			MAX_ITER_REACHED
        };

        /// \brief Constants for selecting the type of the supply constraints.
        ///
        /// Enum type containing constants for selecting the supply type,
        /// i.e. the direction of the inequalities in the supply/demand
        /// constraints of the \ref min_cost_flow "minimum cost flow problem".
        ///
        /// The default supply type is \c GEQ, the \c LEQ type can be
        /// selected using \ref supplyType().
        /// The equality form is a special case of both supply types.
        enum SupplyType {
            /// This option means that there are <em>"greater or equal"</em>
            /// supply/demand constraints in the definition of the problem.
            GEQ,
            /// This option means that there are <em>"less or equal"</em>
            /// supply/demand constraints in the definition of the problem.
            LEQ
        };



    private:

        int max_iter;
        TEMPLATE_DIGRAPH_TYPEDEFS(GR);

        typedef std::vector<int> IntVector;
        typedef std::vector<NodesType> UHalfIntVector;
        typedef std::vector<Value> ValueVector;
        typedef std::vector<Cost> CostVector;
        //	typedef SparseValueVector<Cost> CostVector;
        typedef std::vector<char> BoolVector;
        // Note: vector<char> is used instead of vector<bool> for efficiency reasons

        // State constants for arcs
        enum ArcState {
            STATE_UPPER = -1,
            STATE_TREE  =  0,
            STATE_LOWER =  1
        };

        typedef std::vector<signed char> StateVector;
        // Note: vector<signed char> is used instead of vector<ArcState> for
        // efficiency reasons

    private:

        // Data related to the underlying digraph
        const GR &_graph;
        int _node_num;
        int _arc_num;
        int _all_arc_num;
        int _search_arc_num;

        // Parameters of the problem
        SupplyType _stype;
        Value _sum_supply;

        inline int _node_id(int n) const {return _node_num-n-1;} ;

	    //IntArcMap _arc_id;
        UHalfIntVector _source;
        UHalfIntVector _target;
        bool _arc_mixing;
    public:
        // Node and arc data
        CostVector _cost;
        ValueVector _supply;
        ValueVector _flow;
        //SparseValueVector<Value> _flow;
        CostVector _pi;


    private:
        // Data for storing the spanning tree structure
        IntVector _parent;
        IntVector _pred;
        IntVector _thread;
        IntVector _rev_thread;
        IntVector _succ_num;
        IntVector _last_succ;
        IntVector _dirty_revs;
        BoolVector _forward;
        StateVector _state;
        int _root;

        // Temporary data used in the current pivot iteration
        int in_arc, join, u_in, v_in, u_out, v_out;
        int first, second, right, last;
        int stem, par_stem, new_stem;
        Value delta;

        const Value MAX;

        int mixingCoeff;

    public:

        /// \brief Constant for infinite upper bounds (capacities).
        ///
        /// Constant for infinite upper bounds (capacities).
        /// It is \c std::numeric_limits<Value>::infinity() if available,
        /// \c std::numeric_limits<Value>::max() otherwise.
        const Value INF;

    private:

        // thank you to DVK and MizardX from StackOverflow for this function!
        inline int sequence(int k) const {
            int smallv = (k > num_total_big_subsequence_numbers) & 1;

            k -= num_total_big_subsequence_numbers * smallv;
            int subsequence_length2 = subsequence_length- smallv;
            int subsequence_num = (k / subsequence_length2) + num_big_subseqiences * smallv;
            int subsequence_offset = (k % subsequence_length2) * mixingCoeff;

            return subsequence_offset + subsequence_num;
        }
        int subsequence_length;
        int num_big_subseqiences;
        int num_total_big_subsequence_numbers;

        inline int getArcID(const Arc &arc) const
        {
            //int n = _arc_num-arc._id-1;
            int n = _arc_num-GR::id(arc)-1;

            //int a = mixingCoeff*(n%mixingCoeff) + n/mixingCoeff;
            //int b = _arc_id[arc];
            if (_arc_mixing)
                return sequence(n);
            else
                return n;
        }

        // finally unused because too slow
        inline int getSource(const int arc) const
        {
            //int a = _source[arc];
            //return a;

            int n = _arc_num-arc-1;
            if (_arc_mixing)
                n = mixingCoeff*(n%mixingCoeff) + n/mixingCoeff;

            int b;
            if (n>=0)
                b = _node_id(_graph.source(GR::arcFromId( n ) ));
            else
            {
                n = arc+1-_arc_num;
                if ( n<=_node_num)
                    b = _node_num;
                else
                    if ( n>=_graph._n1)
                        b = _graph._n1;
                    else
                        b = _graph._n1-n;
            }

            return b;
        }



        // Implementation of the Block Search pivot rule
        class BlockSearchPivotRule
        {
        private:

            // References to the NetworkSimplexSimple class
            const UHalfIntVector  &_source;
            const UHalfIntVector  &_target;
            const CostVector &_cost;
            const StateVector &_state;
            const CostVector &_pi;
            int &_in_arc;
            int _search_arc_num;

            // Pivot rule data
            int _block_size;
            int _next_arc;
            NetworkSimplexSimple &_ns;

        public:

            // Constructor
            BlockSearchPivotRule(NetworkSimplexSimple &ns) :
            _source(ns._source), _target(ns._target),
            _cost(ns._cost), _state(ns._state), _pi(ns._pi),
            _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
            _next_arc(0),_ns(ns)
            {
                // The main parameters of the pivot rule
                const double BLOCK_SIZE_FACTOR = 1.0;
                const int MIN_BLOCK_SIZE = 10;

                _block_size = std::max( int(BLOCK_SIZE_FACTOR *
                                            std::sqrt(double(_search_arc_num))),
                                       MIN_BLOCK_SIZE );
            }
            // Find next entering arc
            bool findEnteringArc() {
                Cost c, min = 0;
                int e;
                int cnt = _block_size;
                double a;
                    for (e = _next_arc; e != _search_arc_num; ++e) {
                        c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
                        if (c < min) {
                            min = c;
                            _in_arc = e;
                        }
                        if (--cnt == 0) {
                            a=fabs(_pi[_source[_in_arc]])>fabs(_pi[_target[_in_arc]]) ? fabs(_pi[_source[_in_arc]]):fabs(_pi[_target[_in_arc]]);
                            a=a>fabs(_cost[_in_arc])?a:fabs(_cost[_in_arc]);
                            if (min <  -EPSILON*a) goto search_end;
                            cnt = _block_size;
                        }
                    }
                    for (e = 0; e != _next_arc; ++e) {
                        c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
                        if (c < min) {
                            min = c;
                            _in_arc = e;
                        }
                        if (--cnt == 0) {
                            a=fabs(_pi[_source[_in_arc]])>fabs(_pi[_target[_in_arc]]) ? fabs(_pi[_source[_in_arc]]):fabs(_pi[_target[_in_arc]]);
                            a=a>fabs(_cost[_in_arc])?a:fabs(_cost[_in_arc]);
                            if (min <  -EPSILON*a) goto search_end;
                            cnt = _block_size;
                        }
                    }
                    a=fabs(_pi[_source[_in_arc]])>fabs(_pi[_target[_in_arc]]) ? fabs(_pi[_source[_in_arc]]):fabs(_pi[_target[_in_arc]]);
                    a=a>fabs(_cost[_in_arc])?a:fabs(_cost[_in_arc]);
                    if (min >=  -EPSILON*a) return false;

            search_end:
                _next_arc = e;
                return true;
            }

        }; //class BlockSearchPivotRule



    public:



        int _init_nb_nodes;
        long long _init_nb_arcs;

        /// \name Parameters
        /// The parameters of the algorithm can be specified using these
        /// functions.

        /// @{


        /// \brief Set the costs of the arcs.
        ///
        /// This function sets the costs of the arcs.
        /// If it is not used before calling \ref run(), the costs
        /// will be set to \c 1 on all arcs.
        ///
        /// \param map An arc map storing the costs.
        /// Its \c Value type must be convertible to the \c Cost type
        /// of the algorithm.
        ///
        /// \return <tt>(*this)</tt>
        template<typename CostMap>
        NetworkSimplexSimple& costMap(const CostMap& map) {
            Arc a; _graph.first(a);
            for (; a != INVALID; _graph.next(a)) {
                _cost[getArcID(a)] = map[a];
            }
            return *this;
        }


        /// \brief Set the costs of one arc.
        ///
        /// This function sets the costs of one arcs.
        /// Done for memory reasons
        ///
        /// \param arc An arc.
        /// \param arc A cost
        ///
        /// \return <tt>(*this)</tt>
        template<typename Value>
        NetworkSimplexSimple& setCost(const Arc& arc, const Value cost) {
            _cost[getArcID(arc)] = cost;
            return *this;
        }


        /// \brief Set the supply values of the nodes.
        ///
        /// This function sets the supply values of the nodes.
        /// If neither this function nor \ref stSupply() is used before
        /// calling \ref run(), the supply of each node will be set to zero.
        ///
        /// \param map A node map storing the supply values.
        /// Its \c Value type must be convertible to the \c Value type
        /// of the algorithm.
        ///
        /// \return <tt>(*this)</tt>
        template<typename SupplyMap>
        NetworkSimplexSimple& supplyMap(const SupplyMap& map) {
            Node n; _graph.first(n);
            for (; n != INVALIDNODE; _graph.next(n)) {
                _supply[_node_id(n)] = map[n];
            }
            return *this;
        }
        template<typename SupplyMap>
        NetworkSimplexSimple& supplyMap(const SupplyMap* map1, int n1, const SupplyMap* map2, int n2) {
            Node n; _graph.first(n);
            for (; n != INVALIDNODE; _graph.next(n)) {
                if (n<n1)
                    _supply[_node_id(n)] = map1[n];
                else
                    _supply[_node_id(n)] = map2[n-n1];
            }
            return *this;
        }
        template<typename SupplyMap>
        NetworkSimplexSimple& supplyMapAll(SupplyMap val1, int n1, SupplyMap val2, int n2) {
            Node n; _graph.first(n);
            for (; n != INVALIDNODE; _graph.next(n)) {
                if (n<n1)
                    _supply[_node_id(n)] = val1;
                else
                    _supply[_node_id(n)] = val2;
            }
            return *this;
        }

        /// \brief Set single source and target nodes and a supply value.
        ///
        /// This function sets a single source node and a single target node
        /// and the required flow value.
        /// If neither this function nor \ref supplyMap() is used before
        /// calling \ref run(), the supply of each node will be set to zero.
        ///
        /// Using this function has the same effect as using \ref supplyMap()
        /// with such a map in which \c k is assigned to \c s, \c -k is
        /// assigned to \c t and all other nodes have zero supply value.
        ///
        /// \param s The source node.
        /// \param t The target node.
        /// \param k The required amount of flow from node \c s to node \c t
        /// (i.e. the supply of \c s and the demand of \c t).
        ///
        /// \return <tt>(*this)</tt>
        NetworkSimplexSimple& stSupply(const Node& s, const Node& t, Value k) {
            for (int i = 0; i != _node_num; ++i) {
                _supply[i] = 0;
            }
            _supply[_node_id(s)] =  k;
            _supply[_node_id(t)] = -k;
            return *this;
        }

        /// \brief Set the type of the supply constraints.
        ///
        /// This function sets the type of the supply/demand constraints.
        /// If it is not used before calling \ref run(), the \ref GEQ supply
        /// type will be used.
        ///
        /// For more information, see \ref SupplyType.
        ///
        /// \return <tt>(*this)</tt>
        NetworkSimplexSimple& supplyType(SupplyType supply_type) {
            _stype = supply_type;
            return *this;
        }

        /// @}

        /// \name Execution Control
        /// The algorithm can be executed using \ref run().

        /// @{

        /// \brief Run the algorithm.
        ///
        /// This function runs the algorithm.
        /// The paramters can be specified using functions \ref lowerMap(),
        /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(),
        /// \ref supplyType().
        /// For example,
        /// \code
        ///   NetworkSimplexSimple<ListDigraph> ns(graph);
        ///   ns.lowerMap(lower).upperMap(upper).costMap(cost)
        ///     .supplyMap(sup).run();
        /// \endcode
        ///
        /// This function can be called more than once. All the given parameters
        /// are kept for the next call, unless \ref resetParams() or \ref reset()
        /// is used, thus only the modified parameters have to be set again.
        /// If the underlying digraph was also modified after the construction
        /// of the class (or the last \ref reset() call), then the \ref reset()
        /// function must be called.
        ///
        /// \param pivot_rule The pivot rule that will be used during the
        /// algorithm. For more information, see \ref PivotRule.
        ///
        /// \return \c INFEASIBLE if no feasible flow exists,
        /// \n \c OPTIMAL if the problem has optimal solution
        /// (i.e. it is feasible and bounded), and the algorithm has found
        /// optimal flow and node potentials (primal and dual solutions),
        /// \n \c UNBOUNDED if the objective function of the problem is
        /// unbounded, i.e. there is a directed cycle having negative total
        /// cost and infinite upper bound.
        ///
        /// \see ProblemType, PivotRule
        /// \see resetParams(), reset()
        ProblemType run() {
#if DEBUG_LVL>0
            std::cout << "OPTIMAL = " << OPTIMAL << "\nINFEASIBLE = " << INFEASIBLE << "\nUNBOUNDED = " << UNBOUNDED << "\nMAX_ITER_REACHED" << MAX_ITER_REACHED << "\n" ;
#endif

            if (!init()) return INFEASIBLE;
#if DEBUG_LVL>0
            std::cout << "Init done, starting iterations\n";
#endif
            return start();
        }

        /// \brief Reset all the parameters that have been given before.
        ///
        /// This function resets all the paramaters that have been given
        /// before using functions \ref lowerMap(), \ref upperMap(),
        /// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType().
        ///
        /// It is useful for multiple \ref run() calls. Basically, all the given
        /// parameters are kept for the next \ref run() call, unless
        /// \ref resetParams() or \ref reset() is used.
        /// If the underlying digraph was also modified after the construction
        /// of the class or the last \ref reset() call, then the \ref reset()
        /// function must be used, otherwise \ref resetParams() is sufficient.
        ///
        /// For example,
        /// \code
        ///   NetworkSimplexSimple<ListDigraph> ns(graph);
        ///
        ///   // First run
        ///   ns.lowerMap(lower).upperMap(upper).costMap(cost)
        ///     .supplyMap(sup).run();
        ///
        ///   // Run again with modified cost map (resetParams() is not called,
        ///   // so only the cost map have to be set again)
        ///   cost[e] += 100;
        ///   ns.costMap(cost).run();
        ///
        ///   // Run again from scratch using resetParams()
        ///   // (the lower bounds will be set to zero on all arcs)
        ///   ns.resetParams();
        ///   ns.upperMap(capacity).costMap(cost)
        ///     .supplyMap(sup).run();
        /// \endcode
        ///
        /// \return <tt>(*this)</tt>
        ///
        /// \see reset(), run()
        NetworkSimplexSimple& resetParams() {
            for (int i = 0; i != _node_num; ++i) {
                _supply[i] = 0;
            }
            for (int i = 0; i != _arc_num; ++i) {
                _cost[i] = 1;
            }
            _stype = GEQ;
            return *this;
        }



        int divid (int x, int y)
        {
            return (x-x%y)/y;
        }

        /// \brief Reset the internal data structures and all the parameters
        /// that have been given before.
        ///
        /// This function resets the internal data structures and all the
        /// paramaters that have been given before using functions \ref lowerMap(),
        /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(),
        /// \ref supplyType().
        ///
        /// It is useful for multiple \ref run() calls. Basically, all the given
        /// parameters are kept for the next \ref run() call, unless
        /// \ref resetParams() or \ref reset() is used.
        /// If the underlying digraph was also modified after the construction
        /// of the class or the last \ref reset() call, then the \ref reset()
        /// function must be used, otherwise \ref resetParams() is sufficient.
        ///
        /// See \ref resetParams() for examples.
        ///
        /// \return <tt>(*this)</tt>
        ///
        /// \see resetParams(), run()
        NetworkSimplexSimple& reset() {
            // Resize vectors
            _node_num = _init_nb_nodes;
            _arc_num = _init_nb_arcs;
            int all_node_num = _node_num + 1;
            int max_arc_num = _arc_num + 2 * _node_num;

            _source.resize(max_arc_num);
            _target.resize(max_arc_num);

            _cost.resize(max_arc_num);
            _supply.resize(all_node_num);
            _flow.resize(max_arc_num);
            _pi.resize(all_node_num);

            _parent.resize(all_node_num);
            _pred.resize(all_node_num);
            _forward.resize(all_node_num);
            _thread.resize(all_node_num);
            _rev_thread.resize(all_node_num);
            _succ_num.resize(all_node_num);
            _last_succ.resize(all_node_num);
            _state.resize(max_arc_num);


            //_arc_mixing=false;
            if (_arc_mixing) {
                // Store the arcs in a mixed order
                int k = std::max(int(std::sqrt(double(_arc_num))), 10);
                mixingCoeff = k;
                subsequence_length = _arc_num / mixingCoeff + 1;
                num_big_subseqiences = _arc_num % mixingCoeff;
                num_total_big_subsequence_numbers = subsequence_length * num_big_subseqiences;

                int i = 0, j = 0;
                Arc a; _graph.first(a);
                for (; a != INVALID; _graph.next(a)) {
                    _source[i] = _node_id(_graph.source(a));
                    _target[i] = _node_id(_graph.target(a));
                    //_arc_id[a] = i;
                    if ((i += k) >= _arc_num) i = ++j;
                }
            } else {
                // Store the arcs in the original order
                int i = 0;
                Arc a; _graph.first(a);
                for (; a != INVALID; _graph.next(a), ++i) {
                    _source[i] = _node_id(_graph.source(a));
                    _target[i] = _node_id(_graph.target(a));
                    //_arc_id[a] = i;
                }
            }

            // Reset parameters
            resetParams();
            return *this;
        }

        /// @}

        /// \name Query Functions
        /// The results of the algorithm can be obtained using these
        /// functions.\n
        /// The \ref run() function must be called before using them.

        /// @{

        /// \brief Return the total cost of the found flow.
        ///
        /// This function returns the total cost of the found flow.
        /// Its complexity is O(e).
        ///
        /// \note The return type of the function can be specified as a
        /// template parameter. For example,
        /// \code
        ///   ns.totalCost<double>();
        /// \endcode
        /// It is useful if the total cost cannot be stored in the \c Cost
        /// type of the algorithm, which is the default return type of the
        /// function.
        ///
        /// \pre \ref run() must be called before using this function.
        /*template <typename Number>
         Number totalCost() const {
         Number c = 0;
         for (ArcIt a(_graph); a != INVALID; ++a) {
         int i = getArcID(a);
         c += Number(_flow[i]) * Number(_cost[i]);
         }
         return c;
         }*/

        template <typename Number>
        Number totalCost() const {
            Number c = 0;

            /*#ifdef HASHMAP
             typename stdext::hash_map<int, Value>::const_iterator it;
             #else
             typename std::map<int, Value>::const_iterator it;
             #endif
             for (it = _flow.data.begin(); it!=_flow.data.end(); ++it)
             c += Number(it->second) * Number(_cost[it->first]);
             return c;*/

            for (unsigned long i=0; i<_flow.size(); i++)
                c += _flow[i] * Number(_cost[i]);
            return c;

        }

#ifndef DOXYGEN
        Cost totalCost() const {
            return totalCost<Cost>();
        }
#endif

        /// \brief Return the flow on the given arc.
        ///
        /// This function returns the flow on the given arc.
        ///
        /// \pre \ref run() must be called before using this function.
        Value flow(const Arc& a) const {
            return _flow[getArcID(a)];
        }

        /// \brief Return the flow map (the primal solution).
        ///
        /// This function copies the flow value on each arc into the given
        /// map. The \c Value type of the algorithm must be convertible to
        /// the \c Value type of the map.
        ///
        /// \pre \ref run() must be called before using this function.
        template <typename FlowMap>
        void flowMap(FlowMap &map) const {
            Arc a; _graph.first(a);
            for (; a != INVALID; _graph.next(a)) {
                map.set(a, _flow[getArcID(a)]);
            }
        }

        /// \brief Return the potential (dual value) of the given node.
        ///
        /// This function returns the potential (dual value) of the
        /// given node.
        ///
        /// \pre \ref run() must be called before using this function.
        Cost potential(const Node& n) const {
            return _pi[_node_id(n)];
        }

        /// \brief Return the potential map (the dual solution).
        ///
        /// This function copies the potential (dual value) of each node
        /// into the given map.
        /// The \c Cost type of the algorithm must be convertible to the
        /// \c Value type of the map.
        ///
        /// \pre \ref run() must be called before using this function.
        template <typename PotentialMap>
        void potentialMap(PotentialMap &map) const {
            Node n; _graph.first(n);
            for (; n != INVALID; _graph.next(n)) {
                map.set(n, _pi[_node_id(n)]);
            }
        }

        /// @}

    private:

        // Initialize internal data structures
        bool init() {
            if (_node_num == 0) return false;
            
            // Check the sum of supply values
            _sum_supply = 0;
            for (int i = 0; i != _node_num; ++i) {
                _sum_supply += _supply[i];
            }
            if ( fabs(_sum_supply) > _EPSILON ) return false;
            
			_sum_supply = 0;

            // Initialize artifical cost
            Cost ART_COST;
            if (std::numeric_limits<Cost>::is_exact) {
                ART_COST = std::numeric_limits<Cost>::max() / 2 + 1;
            } else {
                ART_COST = 0;
                for (int i = 0; i != _arc_num; ++i) {
                    if (_cost[i] > ART_COST) ART_COST = _cost[i];
                }
                ART_COST = (ART_COST + 1) * _node_num;
            }

            // Initialize arc maps
            for (int i = 0; i != _arc_num; ++i) {
                //_flow[i] = 0; //by default, the sparse matrix is empty
                _state[i] = STATE_LOWER;
            }

            // Set data for the artificial root node
            _root = _node_num;
            _parent[_root] = -1;
            _pred[_root] = -1;
            _thread[_root] = 0;
            _rev_thread[0] = _root;
            _succ_num[_root] = _node_num + 1;
            _last_succ[_root] = _root - 1;
            _supply[_root] = -_sum_supply;
            _pi[_root] = 0;

            // Add artificial arcs and initialize the spanning tree data structure
            if (_sum_supply == 0) {
                // EQ supply constraints
                _search_arc_num = _arc_num;
                _all_arc_num = _arc_num + _node_num;
                for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
                    _parent[u] = _root;
                    _pred[u] = e;
                    _thread[u] = u + 1;
                    _rev_thread[u + 1] = u;
                    _succ_num[u] = 1;
                    _last_succ[u] = u;
                    _state[e] = STATE_TREE;
                    if (_supply[u] >= 0) {
                        _forward[u] = true;
                        _pi[u] = 0;
                        _source[e] = u;
                        _target[e] = _root;
                        _flow[e] = _supply[u];
                        _cost[e] = 0;
                    } else {
                        _forward[u] = false;
                        _pi[u] = ART_COST;
                        _source[e] = _root;
                        _target[e] = u;
                        _flow[e] = -_supply[u];
                        _cost[e] = ART_COST;
                    }
                }
            }
            else if (_sum_supply > 0) {
                // LEQ supply constraints
                _search_arc_num = _arc_num + _node_num;
                int f = _arc_num + _node_num;
                for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
                    _parent[u] = _root;
                    _thread[u] = u + 1;
                    _rev_thread[u + 1] = u;
                    _succ_num[u] = 1;
                    _last_succ[u] = u;
                    if (_supply[u] >= 0) {
                        _forward[u] = true;
                        _pi[u] = 0;
                        _pred[u] = e;
                        _source[e] = u;
                        _target[e] = _root;
                        _flow[e] = _supply[u];
                        _cost[e] = 0;
                        _state[e] = STATE_TREE;
                    } else {
                        _forward[u] = false;
                        _pi[u] = ART_COST;
                        _pred[u] = f;
                        _source[f] = _root;
                        _target[f] = u;
                        _flow[f] = -_supply[u];
                        _cost[f] = ART_COST;
                        _state[f] = STATE_TREE;
                        _source[e] = u;
                        _target[e] = _root;
                        //_flow[e] = 0;  //by default, the sparse matrix is empty
                        _cost[e] = 0;
                        _state[e] = STATE_LOWER;
                        ++f;
                    }
                }
                _all_arc_num = f;
            }
            else {
                // GEQ supply constraints
                _search_arc_num = _arc_num + _node_num;
                int f = _arc_num + _node_num;
                for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
                    _parent[u] = _root;
                    _thread[u] = u + 1;
                    _rev_thread[u + 1] = u;
                    _succ_num[u] = 1;
                    _last_succ[u] = u;
                    if (_supply[u] <= 0) {
                        _forward[u] = false;
                        _pi[u] = 0;
                        _pred[u] = e;
                        _source[e] = _root;
                        _target[e] = u;
                        _flow[e] = -_supply[u];
                        _cost[e] = 0;
                        _state[e] = STATE_TREE;
                    } else {
                        _forward[u] = true;
                        _pi[u] = -ART_COST;
                        _pred[u] = f;
                        _source[f] = u;
                        _target[f] = _root;
                        _flow[f] = _supply[u];
                        _state[f] = STATE_TREE;
                        _cost[f] = ART_COST;
                        _source[e] = _root;
                        _target[e] = u;
                        //_flow[e] = 0; //by default, the sparse matrix is empty
                        _cost[e] = 0;
                        _state[e] = STATE_LOWER;
                        ++f;
                    }
                }
                _all_arc_num = f;
            }

            return true;
        }

        // Find the join node
        void findJoinNode() {
            int u = _source[in_arc];
            int v = _target[in_arc];
            while (u != v) {
                if (_succ_num[u] < _succ_num[v]) {
                    u = _parent[u];
                } else {
                    v = _parent[v];
                }
            }
            join = u;
        }

        // Find the leaving arc of the cycle and returns true if the
        // leaving arc is not the same as the entering arc
        bool findLeavingArc() {
            // Initialize first and second nodes according to the direction
            // of the cycle
            if (_state[in_arc] == STATE_LOWER) {
                first  = _source[in_arc];
                second = _target[in_arc];
            } else {
                first  = _target[in_arc];
                second = _source[in_arc];
            }
            delta = INF;
            int result = 0;
            Value d;
            int e;

            // Search the cycle along the path form the first node to the root
            for (int u = first; u != join; u = _parent[u]) {
                e = _pred[u];
                d = _forward[u] ? _flow[e] : INF ;
                if (d < delta) {
                    delta = d;
                    u_out = u;
                    result = 1;
                }
            }
            // Search the cycle along the path form the second node to the root
            for (int u = second; u != join; u = _parent[u]) {
                e = _pred[u];
                d = _forward[u] ? INF  : _flow[e];
                if (d <= delta) {
                    delta = d;
                    u_out = u;
                    result = 2;
                }
            }

            if (result == 1) {
                u_in = first;
                v_in = second;
            } else {
                u_in = second;
                v_in = first;
            }
            return result != 0;
        }

        // Change _flow and _state vectors
        void changeFlow(bool change) {
            // Augment along the cycle
            if (delta > 0) {
                Value val = _state[in_arc] * delta;
                _flow[in_arc] += val;
                for (int u = _source[in_arc]; u != join; u = _parent[u]) {
                    _flow[_pred[u]] += _forward[u] ? -val : val;
                }
                for (int u = _target[in_arc]; u != join; u = _parent[u]) {
                    _flow[_pred[u]] += _forward[u] ? val : -val;
                }
            }
            // Update the state of the entering and leaving arcs
            if (change) {
                _state[in_arc] = STATE_TREE;
                _state[_pred[u_out]] =
                (_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER;
            } else {
                _state[in_arc] = -_state[in_arc];
            }
        }

        // Update the tree structure
        void updateTreeStructure() {
            int u, w;
            int old_rev_thread = _rev_thread[u_out];
            int old_succ_num = _succ_num[u_out];
            int old_last_succ = _last_succ[u_out];
            v_out = _parent[u_out];

            u = _last_succ[u_in];  // the last successor of u_in
            right = _thread[u];    // the node after it

            // Handle the case when old_rev_thread equals to v_in
            // (it also means that join and v_out coincide)
            if (old_rev_thread == v_in) {
                last = _thread[_last_succ[u_out]];
            } else {
                last = _thread[v_in];
            }

            // Update _thread and _parent along the stem nodes (i.e. the nodes
            // between u_in and u_out, whose parent have to be changed)
            _thread[v_in] = stem = u_in;
            _dirty_revs.clear();
            _dirty_revs.push_back(v_in);
            par_stem = v_in;
            while (stem != u_out) {
                // Insert the next stem node into the thread list
                new_stem = _parent[stem];
                _thread[u] = new_stem;
                _dirty_revs.push_back(u);

                // Remove the subtree of stem from the thread list
                w = _rev_thread[stem];
                _thread[w] = right;
                _rev_thread[right] = w;

                // Change the parent node and shift stem nodes
                _parent[stem] = par_stem;
                par_stem = stem;
                stem = new_stem;

                // Update u and right
                u = _last_succ[stem] == _last_succ[par_stem] ?
                _rev_thread[par_stem] : _last_succ[stem];
                right = _thread[u];
            }
            _parent[u_out] = par_stem;
            _thread[u] = last;
            _rev_thread[last] = u;
            _last_succ[u_out] = u;

            // Remove the subtree of u_out from the thread list except for
            // the case when old_rev_thread equals to v_in
            // (it also means that join and v_out coincide)
            if (old_rev_thread != v_in) {
                _thread[old_rev_thread] = right;
                _rev_thread[right] = old_rev_thread;
            }

            // Update _rev_thread using the new _thread values
            for (int i = 0; i != int(_dirty_revs.size()); ++i) {
                u = _dirty_revs[i];
                _rev_thread[_thread[u]] = u;
            }

            // Update _pred, _forward, _last_succ and _succ_num for the
            // stem nodes from u_out to u_in
            int tmp_sc = 0, tmp_ls = _last_succ[u_out];
            u = u_out;
            while (u != u_in) {
                w = _parent[u];
                _pred[u] = _pred[w];
                _forward[u] = !_forward[w];
                tmp_sc += _succ_num[u] - _succ_num[w];
                _succ_num[u] = tmp_sc;
                _last_succ[w] = tmp_ls;
                u = w;
            }
            _pred[u_in] = in_arc;
            _forward[u_in] = ((unsigned int)u_in == _source[in_arc]);
            _succ_num[u_in] = old_succ_num;

            // Set limits for updating _last_succ form v_in and v_out
            // towards the root
            int up_limit_in = -1;
            int up_limit_out = -1;
            if (_last_succ[join] == v_in) {
                up_limit_out = join;
            } else {
                up_limit_in = join;
            }

            // Update _last_succ from v_in towards the root
            for (u = v_in; u != up_limit_in && _last_succ[u] == v_in;
                 u = _parent[u]) {
                _last_succ[u] = _last_succ[u_out];
            }
            // Update _last_succ from v_out towards the root
            if (join != old_rev_thread && v_in != old_rev_thread) {
                for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
                     u = _parent[u]) {
                    _last_succ[u] = old_rev_thread;
                }
            } else {
                for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
                     u = _parent[u]) {
                    _last_succ[u] = _last_succ[u_out];
                }
            }

            // Update _succ_num from v_in to join
            for (u = v_in; u != join; u = _parent[u]) {
                _succ_num[u] += old_succ_num;
            }
            // Update _succ_num from v_out to join
            for (u = v_out; u != join; u = _parent[u]) {
                _succ_num[u] -= old_succ_num;
            }
        }

        // Update potentials
        void updatePotential() {
            Cost sigma = _forward[u_in] ?
            _pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] :
            _pi[v_in] - _pi[u_in] + _cost[_pred[u_in]];
            // Update potentials in the subtree, which has been moved
            int end = _thread[_last_succ[u_in]];
            for (int u = u_in; u != end; u = _thread[u]) {
                _pi[u] += sigma;
            }
        }

        // Heuristic initial pivots
        bool initialPivots() {
            Value curr, total = 0;
            std::vector<Node> supply_nodes, demand_nodes;
            Node u; _graph.first(u);
            for (; u != INVALIDNODE; _graph.next(u)) {
                curr = _supply[_node_id(u)];
                if (curr > 0) {
                    total += curr;
                    supply_nodes.push_back(u);
                }
                else if (curr < 0) {
                    demand_nodes.push_back(u);
                }
            }
            if (_sum_supply > 0) total -= _sum_supply;
            if (total <= 0) return true;

            IntVector arc_vector;
            if (_sum_supply >= 0) {
                if (supply_nodes.size() == 1 && demand_nodes.size() == 1) {
                    // Perform a reverse graph search from the sink to the source
                    //typename GR::template NodeMap<bool> reached(_graph, false);
                    BoolVector reached(_node_num, false);
                    Node s = supply_nodes[0], t = demand_nodes[0];
                    std::vector<Node> stack;
                    reached[t] = true;
                    stack.push_back(t);
                    while (!stack.empty()) {
                        Node u, v = stack.back();
                        stack.pop_back();
                        if (v == s) break;
                        Arc a; _graph.firstIn(a, v);
                        for (; a != INVALID; _graph.nextIn(a)) {
                            if (reached[u = _graph.source(a)]) continue;
                            int j = getArcID(a);
                            if (INF >= total) {
                                arc_vector.push_back(j);
                                reached[u] = true;
                                stack.push_back(u);
                            }
                        }
                    }
                } else {
                    // Find the min. cost incomming arc for each demand node
                    for (int i = 0; i != int(demand_nodes.size()); ++i) {
                        Node v = demand_nodes[i];
                        Cost c, min_cost = std::numeric_limits<Cost>::max();
                        Arc min_arc = INVALID;
                        Arc a; _graph.firstIn(a, v);
                        for (; a != INVALID; _graph.nextIn(a)) {
                            c = _cost[getArcID(a)];
                            if (c < min_cost) {
                                min_cost = c;
                                min_arc = a;
                            }
                        }
                        if (min_arc != INVALID) {
                            arc_vector.push_back(getArcID(min_arc));
                        }
                    }
                }
            } else {
                // Find the min. cost outgoing arc for each supply node
                for (int i = 0; i != int(supply_nodes.size()); ++i) {
                    Node u = supply_nodes[i];
                    Cost c, min_cost = std::numeric_limits<Cost>::max();
                    Arc min_arc = INVALID;
                    Arc a; _graph.firstOut(a, u);
                    for (; a != INVALID; _graph.nextOut(a)) {
                        c = _cost[getArcID(a)];
                        if (c < min_cost) {
                            min_cost = c;
                            min_arc = a;
                        }
                    }
                    if (min_arc != INVALID) {
                        arc_vector.push_back(getArcID(min_arc));
                    }
                }
            }

            // Perform heuristic initial pivots
            for (int i = 0; i != int(arc_vector.size()); ++i) {
                in_arc = arc_vector[i];
                // l'erreur est probablement ici...
                if (_state[in_arc] * (_cost[in_arc] + _pi[_source[in_arc]] -
                                      _pi[_target[in_arc]]) >= 0) continue;
                findJoinNode();
                bool change = findLeavingArc();
                if (delta >= MAX) return false;
                changeFlow(change);
                if (change) {
                    updateTreeStructure();
                    updatePotential();
                }
            }
            return true;
        }

        // Execute the algorithm
        ProblemType start() {
            return start<BlockSearchPivotRule>();
        }

        template <typename PivotRuleImpl>
        ProblemType start() {
            PivotRuleImpl pivot(*this);
			ProblemType retVal = OPTIMAL;

            // Perform heuristic initial pivots
            if (!initialPivots()) return UNBOUNDED;

            int iter_number=0;
            //pivot.setDantzig(true);
            // Execute the Network Simplex algorithm
            while (pivot.findEnteringArc()) {
                if(max_iter > 0 && ++iter_number>=max_iter&&max_iter>0){
                    char errMess[1000];
                    sprintf( errMess, "RESULT MIGHT BE INACURATE\nMax number of iteration reached, currently \%d. Sometimes iterations go on in cycle even though the solution has been reached, to check if it's the case here have a look at the minimal reduced cost. If it is very close to machine precision, you might actually have the correct solution, if not try setting the maximum number of iterations a bit higher\n",iter_number );
                    std::cerr << errMess;
					retVal = MAX_ITER_REACHED;
                    break;
                }
#if DEBUG_LVL>0
                if(iter_number>MAX_DEBUG_ITER)
                    break;
                if(iter_number%1000==0||iter_number%1000==1){
                    double curCost=totalCost();
                    double sumFlow=0;
                    double a;
                    a= (fabs(_pi[_source[in_arc]])>=fabs(_pi[_target[in_arc]])) ? fabs(_pi[_source[in_arc]]) : fabs(_pi[_target[in_arc]]);
                    a=a>=fabs(_cost[in_arc])?a:fabs(_cost[in_arc]);
                    for (int i=0; i<_flow.size(); i++) {
                        sumFlow+=_state[i]*_flow[i];
                    }
                    std::cout << "Sum of the flow " << std::setprecision(20) << sumFlow << "\n" << iter_number << " iterations, current cost=" << curCost << "\nReduced cost=" << _state[in_arc] * (_cost[in_arc] + _pi[_source[in_arc]] -_pi[_target[in_arc]]) << "\nPrecision = "<< -EPSILON*(a) << "\n";
                    std::cout << "Arc in = (" << _node_id(_source[in_arc]) << ", " << _node_id(_target[in_arc]) <<")\n";
                    std::cout << "Supplies = (" << _supply[_source[in_arc]] << ", " << _supply[_target[in_arc]] << ")\n";
                    std::cout << _cost[in_arc] << "\n";
                    std::cout << _pi[_source[in_arc]] << "\n";
                    std::cout << _pi[_target[in_arc]] << "\n";
                    std::cout << a << "\n";
                }
#endif

                findJoinNode();
                bool change = findLeavingArc();
                if (delta >= MAX) return UNBOUNDED;
                changeFlow(change);
                if (change) {
                    updateTreeStructure();
                    updatePotential();
                }
#if DEBUG_LVL>0
                else{
                    std::cout << "No change\n";
                }
#endif
#if DEBUG_LVL>1
                std::cout << "Arc in = (" << _source[in_arc] << ", " << _target[in_arc] << ")\n";
#endif

            }


#if DEBUG_LVL>0
                double curCost=totalCost();
                double sumFlow=0;
                double a;
                a= (fabs(_pi[_source[in_arc]])>=fabs(_pi[_target[in_arc]])) ? fabs(_pi[_source[in_arc]]) : fabs(_pi[_target[in_arc]]);
                a=a>=fabs(_cost[in_arc])?a:fabs(_cost[in_arc]);
                for (int i=0; i<_flow.size(); i++) {
                    sumFlow+=_state[i]*_flow[i];
                }
            
                std::cout << "Sum of the flow " << std::setprecision(20) << sumFlow << "\n" << niter << " iterations, current cost=" << curCost << "\nReduced cost=" << _state[in_arc] * (_cost[in_arc] + _pi[_source[in_arc]] -_pi[_target[in_arc]]) << "\nPrecision = "<< -EPSILON*(a) << "\n";
            
                std::cout << "Arc in = (" << _node_id(_source[in_arc]) << ", " << _node_id(_target[in_arc]) <<")\n";
                std::cout << "Supplies = (" << _supply[_source[in_arc]] << ", " << _supply[_target[in_arc]] << ")\n";

#endif

#if DEBUG_LVL>1
            sumFlow=0;
            for (int i=0; i<_flow.size(); i++) {
                sumFlow+=_state[i]*_flow[i];
                if (_state[i]==STATE_TREE) {
                    std::cout << "Non zero value at (" << _node_num+1-_source[i] << ", " << _node_num+1-_target[i] << ")\n";
                }
            }
            std::cout << "Sum of the flow " << sumFlow << "\n"<< niter <<" iterations, current cost=" << totalCost() << "\n";
#endif
            // Check feasibility
			if( retVal == OPTIMAL){
                for (int e = _search_arc_num; e != _all_arc_num; ++e) {
                    if (_flow[e] != 0){
                        if (abs(_flow[e]) > EPSILON)
                            return INFEASIBLE;
                        else
                            _flow[e]=0;

                    }
                }
			}

            // Shift potentials to meet the requirements of the GEQ/LEQ type
            // optimality conditions
            if (_sum_supply == 0) {
                if (_stype == GEQ) {
                    Cost max_pot = -std::numeric_limits<Cost>::max();
                    for (int i = 0; i != _node_num; ++i) {
                        if (_pi[i] > max_pot) max_pot = _pi[i];
                    }
                    if (max_pot > 0) {
                        for (int i = 0; i != _node_num; ++i)
                            _pi[i] -= max_pot;
                    }
                } else {
                    Cost min_pot = std::numeric_limits<Cost>::max();
                    for (int i = 0; i != _node_num; ++i) {
                        if (_pi[i] < min_pot) min_pot = _pi[i];
                    }
                    if (min_pot < 0) {
                        for (int i = 0; i != _node_num; ++i)
                            _pi[i] -= min_pot;
                    }
                }
            }

            return retVal;
        }

    }; //class NetworkSimplexSimple

    ///@}

} //namespace lemon

#endif //LEMON_NETWORK_SIMPLEX_H