summaryrefslogtreecommitdiff
path: root/ot/lp/solver_1d.py
blob: 43763a9bde79c39a463d3e4c1f7d4b6d20ecd8ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
# -*- coding: utf-8 -*-
"""
Exact solvers for the 1D Wasserstein distance using cvxopt
"""

# Author: Remi Flamary <remi.flamary@unice.fr>
# Author: Nicolas Courty <ncourty@irisa.fr>
#
# License: MIT License

import numpy as np
import warnings

from .emd_wrap import emd_1d_sorted
from ..backend import get_backend
from ..utils import list_to_array


def quantile_function(qs, cws, xs):
    r""" Computes the quantile function of an empirical distribution

    Parameters
    ----------
    qs: array-like, shape (n,)
        Quantiles at which the quantile function is evaluated
    cws: array-like, shape (m, ...)
        cumulative weights of the 1D empirical distribution, if batched, must be similar to xs
    xs: array-like, shape (n, ...)
        locations of the 1D empirical distribution, batched against the `xs.ndim - 1` first dimensions

    Returns
    -------
    q: array-like, shape (..., n)
        The quantiles of the distribution
    """
    nx = get_backend(qs, cws)
    n = xs.shape[0]
    if nx.__name__ == 'torch':
        # this is to ensure the best performance for torch searchsorted
        # and avoid a warninng related to non-contiguous arrays
        cws = cws.T.contiguous()
        qs = qs.T.contiguous()
    else:
        cws = cws.T
        qs = qs.T
    idx = nx.searchsorted(cws, qs).T
    return nx.take_along_axis(xs, nx.clip(idx, 0, n - 1), axis=0)


def wasserstein_1d(u_values, v_values, u_weights=None, v_weights=None, p=1, require_sort=True):
    r"""
    Computes the 1 dimensional OT loss [15] between two (batched) empirical
    distributions

    .. math:
        OT_{loss} = \int_0^1 |cdf_u^{-1}(q)  cdf_v^{-1}(q)|^p dq

    It is formally the p-Wasserstein distance raised to the power p.
    We do so in a vectorized way by first building the individual quantile functions then integrating them.

    This function should be preferred to `emd_1d` whenever the backend is
    different to numpy, and when gradients over
    either sample positions or weights are required.

    Parameters
    ----------
    u_values: array-like, shape (n, ...)
        locations of the first empirical distribution
    v_values: array-like, shape (m, ...)
        locations of the second empirical distribution
    u_weights: array-like, shape (n, ...), optional
        weights of the first empirical distribution, if None then uniform weights are used
    v_weights: array-like, shape (m, ...), optional
        weights of the second empirical distribution, if None then uniform weights are used
    p: int, optional
        order of the ground metric used, should be at least 1 (see [2, Chap. 2], default is 1
    require_sort: bool, optional
        sort the distributions atoms locations, if False we will consider they have been sorted prior to being passed to
        the function, default is True

    Returns
    -------
    cost: float/array-like, shape (...)
        the batched EMD

    References
    ----------
    .. [15] Peyré, G., & Cuturi, M. (2018). Computational Optimal Transport.

    """

    assert p >= 1, "The OT loss is only valid for p>=1, {p} was given".format(p=p)

    if u_weights is not None and v_weights is not None:
        nx = get_backend(u_values, v_values, u_weights, v_weights)
    else:
        nx = get_backend(u_values, v_values)

    n = u_values.shape[0]
    m = v_values.shape[0]

    if u_weights is None:
        u_weights = nx.full(u_values.shape, 1. / n, type_as=u_values)
    elif u_weights.ndim != u_values.ndim:
        u_weights = nx.repeat(u_weights[..., None], u_values.shape[-1], -1)
    if v_weights is None:
        v_weights = nx.full(v_values.shape, 1. / m, type_as=v_values)
    elif v_weights.ndim != v_values.ndim:
        v_weights = nx.repeat(v_weights[..., None], v_values.shape[-1], -1)

    if require_sort:
        u_sorter = nx.argsort(u_values, 0)
        u_values = nx.take_along_axis(u_values, u_sorter, 0)

        v_sorter = nx.argsort(v_values, 0)
        v_values = nx.take_along_axis(v_values, v_sorter, 0)

        u_weights = nx.take_along_axis(u_weights, u_sorter, 0)
        v_weights = nx.take_along_axis(v_weights, v_sorter, 0)

    u_cumweights = nx.cumsum(u_weights, 0)
    v_cumweights = nx.cumsum(v_weights, 0)

    qs = nx.sort(nx.concatenate((u_cumweights, v_cumweights), 0), 0)
    u_quantiles = quantile_function(qs, u_cumweights, u_values)
    v_quantiles = quantile_function(qs, v_cumweights, v_values)
    qs = nx.zero_pad(qs, pad_width=[(1, 0)] + (qs.ndim - 1) * [(0, 0)])
    delta = qs[1:, ...] - qs[:-1, ...]
    diff_quantiles = nx.abs(u_quantiles - v_quantiles)

    if p == 1:
        return nx.sum(delta * nx.abs(diff_quantiles), axis=0)
    return nx.sum(delta * nx.power(diff_quantiles, p), axis=0)


def emd_1d(x_a, x_b, a=None, b=None, metric='sqeuclidean', p=1., dense=True,
           log=False):
    r"""Solves the Earth Movers distance problem between 1d measures and returns
    the OT matrix


    .. math::
        \gamma = arg\min_\gamma \sum_i \sum_j \gamma_{ij} d(x_a[i], x_b[j])

        s.t. \gamma 1 = a,
             \gamma^T 1= b,
             \gamma\geq 0
    where :

    - d is the metric
    - x_a and x_b are the samples
    - a and b are the sample weights

    When 'minkowski' is used as a metric, :math:`d(x, y) = |x - y|^p`.

    Uses the algorithm detailed in [1]_

    Parameters
    ----------
    x_a : (ns,) or (ns, 1) ndarray, float64
        Source dirac locations (on the real line)
    x_b : (nt,) or (ns, 1) ndarray, float64
        Target dirac locations (on the real line)
    a : (ns,) ndarray, float64, optional
        Source histogram (default is uniform weight)
    b : (nt,) ndarray, float64, optional
        Target histogram (default is uniform weight)
    metric: str, optional (default='sqeuclidean')
        Metric to be used. Only strings listed in :func:`ot.dist` are accepted.
        Due to implementation details, this function runs faster when
        `'sqeuclidean'`, `'cityblock'`,  or `'euclidean'` metrics are used.
    p: float, optional (default=1.0)
         The p-norm to apply for if metric='minkowski'
    dense: boolean, optional (default=True)
        If True, returns math:`\gamma` as a dense ndarray of shape (ns, nt).
        Otherwise returns a sparse representation using scipy's `coo_matrix`
        format. Due to implementation details, this function runs faster when
        `'sqeuclidean'`, `'minkowski'`, `'cityblock'`,  or `'euclidean'` metrics
        are used.
    log: boolean, optional (default=False)
        If True, returns a dictionary containing the cost.
        Otherwise returns only the optimal transportation matrix.

    Returns
    -------
    gamma: (ns, nt) ndarray
        Optimal transportation matrix for the given parameters
    log: dict
        If input log is True, a dictionary containing the cost


    Examples
    --------

    Simple example with obvious solution. The function emd_1d accepts lists and
    performs automatic conversion to numpy arrays

    >>> import ot
    >>> a=[.5, .5]
    >>> b=[.5, .5]
    >>> x_a = [2., 0.]
    >>> x_b = [0., 3.]
    >>> ot.emd_1d(x_a, x_b, a, b)
    array([[0. , 0.5],
           [0.5, 0. ]])
    >>> ot.emd_1d(x_a, x_b)
    array([[0. , 0.5],
           [0.5, 0. ]])

    References
    ----------

    .. [1]  Peyré, G., & Cuturi, M. (2017). "Computational Optimal
        Transport", 2018.

    See Also
    --------
    ot.lp.emd : EMD for multidimensional distributions
    ot.lp.emd2_1d : EMD for 1d distributions (returns cost instead of the
        transportation matrix)
    """
    a, b, x_a, x_b = list_to_array(a, b, x_a, x_b)
    nx = get_backend(x_a, x_b)

    assert (x_a.ndim == 1 or x_a.ndim == 2 and x_a.shape[1] == 1), \
        "emd_1d should only be used with monodimensional data"
    assert (x_b.ndim == 1 or x_b.ndim == 2 and x_b.shape[1] == 1), \
        "emd_1d should only be used with monodimensional data"

    # if empty array given then use uniform distributions
    if a is None or a.ndim == 0 or len(a) == 0:
        a = nx.ones((x_a.shape[0],), type_as=x_a) / x_a.shape[0]
    if b is None or b.ndim == 0 or len(b) == 0:
        b = nx.ones((x_b.shape[0],), type_as=x_b) / x_b.shape[0]

    # ensure that same mass
    np.testing.assert_almost_equal(
        nx.to_numpy(nx.sum(a, axis=0)),
        nx.to_numpy(nx.sum(b, axis=0)),
        err_msg='a and b vector must have the same sum'
    )
    b = b * nx.sum(a) / nx.sum(b)

    x_a_1d = nx.reshape(x_a, (-1,))
    x_b_1d = nx.reshape(x_b, (-1,))
    perm_a = nx.argsort(x_a_1d)
    perm_b = nx.argsort(x_b_1d)

    G_sorted, indices, cost = emd_1d_sorted(
        nx.to_numpy(a[perm_a]).astype(np.float64),
        nx.to_numpy(b[perm_b]).astype(np.float64),
        nx.to_numpy(x_a_1d[perm_a]).astype(np.float64),
        nx.to_numpy(x_b_1d[perm_b]).astype(np.float64),
        metric=metric, p=p
    )

    G = nx.coo_matrix(
        G_sorted,
        perm_a[indices[:, 0]],
        perm_b[indices[:, 1]],
        shape=(a.shape[0], b.shape[0]),
        type_as=x_a
    )
    if dense:
        G = nx.todense(G)
    elif str(nx) == "jax":
        warnings.warn("JAX does not support sparse matrices, converting to dense")
    if log:
        log = {'cost': nx.from_numpy(cost, type_as=x_a)}
        return G, log
    return G


def emd2_1d(x_a, x_b, a=None, b=None, metric='sqeuclidean', p=1., dense=True,
            log=False):
    r"""Solves the Earth Movers distance problem between 1d measures and returns
    the loss


    .. math::
        \gamma = arg\min_\gamma \sum_i \sum_j \gamma_{ij} d(x_a[i], x_b[j])

        s.t. \gamma 1 = a,
             \gamma^T 1= b,
             \gamma\geq 0
    where :

    - d is the metric
    - x_a and x_b are the samples
    - a and b are the sample weights

    When 'minkowski' is used as a metric, :math:`d(x, y) = |x - y|^p`.

    Uses the algorithm detailed in [1]_

    Parameters
    ----------
    x_a : (ns,) or (ns, 1) ndarray, float64
        Source dirac locations (on the real line)
    x_b : (nt,) or (ns, 1) ndarray, float64
        Target dirac locations (on the real line)
    a : (ns,) ndarray, float64, optional
        Source histogram (default is uniform weight)
    b : (nt,) ndarray, float64, optional
        Target histogram (default is uniform weight)
    metric: str, optional (default='sqeuclidean')
        Metric to be used. Only strings listed in :func:`ot.dist` are accepted.
        Due to implementation details, this function runs faster when
        `'sqeuclidean'`, `'minkowski'`, `'cityblock'`,  or `'euclidean'` metrics
        are used.
    p: float, optional (default=1.0)
         The p-norm to apply for if metric='minkowski'
    dense: boolean, optional (default=True)
        If True, returns math:`\gamma` as a dense ndarray of shape (ns, nt).
        Otherwise returns a sparse representation using scipy's `coo_matrix`
        format. Only used if log is set to True. Due to implementation details,
        this function runs faster when dense is set to False.
    log: boolean, optional (default=False)
        If True, returns a dictionary containing the transportation matrix.
        Otherwise returns only the loss.

    Returns
    -------
    loss: float
        Cost associated to the optimal transportation
    log: dict
        If input log is True, a dictionary containing the Optimal transportation
        matrix for the given parameters


    Examples
    --------

    Simple example with obvious solution. The function emd2_1d accepts lists and
    performs automatic conversion to numpy arrays

    >>> import ot
    >>> a=[.5, .5]
    >>> b=[.5, .5]
    >>> x_a = [2., 0.]
    >>> x_b = [0., 3.]
    >>> ot.emd2_1d(x_a, x_b, a, b)
    0.5
    >>> ot.emd2_1d(x_a, x_b)
    0.5

    References
    ----------

    .. [1]  Peyré, G., & Cuturi, M. (2017). "Computational Optimal
        Transport", 2018.

    See Also
    --------
    ot.lp.emd2 : EMD for multidimensional distributions
    ot.lp.emd_1d : EMD for 1d distributions (returns the transportation matrix
        instead of the cost)
    """
    # If we do not return G (log==False), then we should not to cast it to dense
    # (useless overhead)
    G, log_emd = emd_1d(x_a=x_a, x_b=x_b, a=a, b=b, metric=metric, p=p,
                        dense=dense and log, log=True)
    cost = log_emd['cost']
    if log:
        log_emd = {'G': G}
        return cost, log_emd
    return cost