summaryrefslogtreecommitdiff
path: root/ot/optim.py
blob: b9ca8918b39270076ea410dfc57960a4a5a9a62d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
# -*- coding: utf-8 -*-
"""
Generic solvers for regularized OT
"""

# Author: Remi Flamary <remi.flamary@unice.fr>
#         Titouan Vayer <titouan.vayer@irisa.fr>
#
# License: MIT License

import numpy as np
from scipy.optimize.linesearch import scalar_search_armijo
from .lp import emd
from .bregman import sinkhorn

# The corresponding scipy function does not work for matrices


def line_search_armijo(f, xk, pk, gfk, old_fval,
                       args=(), c1=1e-4, alpha0=0.99):
    """
    Armijo linesearch function that works with matrices

    find an approximate minimum of f(xk+alpha*pk) that satifies the
    armijo conditions.

    Parameters
    ----------
    f : callable
        loss function
    xk : ndarray
        initial position
    pk : ndarray
        descent direction
    gfk : ndarray
        gradient of f at xk
    old_fval : float
        loss value at xk
    args : tuple, optional
        arguments given to f
    c1 : float, optional
        c1 const in armijo rule (>0)
    alpha0 : float, optional
        initial step (>0)

    Returns
    -------
    alpha : float
        step that satisfy armijo conditions
    fc : int
        nb of function call
    fa : float
        loss value at step alpha

    """
    xk = np.atleast_1d(xk)
    fc = [0]

    def phi(alpha1):
        fc[0] += 1
        return f(xk + alpha1 * pk, *args)

    if old_fval is None:
        phi0 = phi(0.)
    else:
        phi0 = old_fval

    derphi0 = np.sum(pk * gfk)  # Quickfix for matrices
    alpha, phi1 = scalar_search_armijo(
        phi, phi0, derphi0, c1=c1, alpha0=alpha0)

    return alpha, fc[0], phi1


def solve_linesearch(cost, G, deltaG, Mi, f_val,
                     armijo=True, C1=None, C2=None, reg=None, Gc=None, constC=None, M=None):
    """
    Solve the linesearch in the FW iterations
    Parameters
    ----------
    cost : method
        Cost in the FW for the linesearch
    G : ndarray, shape(ns,nt)
        The transport map at a given iteration of the FW
    deltaG : ndarray (ns,nt)
        Difference between the optimal map found by linearization in the FW algorithm and the value at a given iteration
    Mi : ndarray (ns,nt)
        Cost matrix of the linearized transport problem. Corresponds to the gradient of the cost
    f_val :  float
        Value of the cost at G
    armijo : bool, optional
            If True the steps of the line-search is found via an armijo research. Else closed form is used.
            If there is convergence issues use False.
    C1 : ndarray (ns,ns), optional
        Structure matrix in the source domain. Only used and necessary when armijo=False
    C2 : ndarray (nt,nt), optional
        Structure matrix in the target domain. Only used and necessary when armijo=False
    reg : float, optional
          Regularization parameter. Only used and necessary when armijo=False
    Gc : ndarray (ns,nt)
        Optimal map found by linearization in the FW algorithm. Only used and necessary when armijo=False
    constC : ndarray (ns,nt)
             Constant for the gromov cost. See [24]. Only used and necessary when armijo=False
    M : ndarray (ns,nt), optional
        Cost matrix between the features. Only used and necessary when armijo=False
    Returns
    -------
    alpha : float
            The optimal step size of the FW
    fc : int
         nb of function call. Useless here
    f_val :  float
             The value of the cost for the next iteration
    References
    ----------
    .. [24] Vayer Titouan, Chapel Laetitia, Flamary R{\'e}mi, Tavenard Romain
          and Courty Nicolas
        "Optimal Transport for structured data with application on graphs"
        International Conference on Machine Learning (ICML). 2019.
    """
    if armijo:
        alpha, fc, f_val = line_search_armijo(cost, G, deltaG, Mi, f_val)
    else:  # requires symetric matrices
        dot1 = np.dot(C1, deltaG)
        dot12 = dot1.dot(C2)
        a = -2 * reg * np.sum(dot12 * deltaG)
        b = np.sum((M + reg * constC) * deltaG) - 2 * reg * (np.sum(dot12 * G) + np.sum(np.dot(C1, G).dot(C2) * deltaG))
        c = cost(G)

        alpha = solve_1d_linesearch_quad(a, b, c)
        fc = None
        f_val = cost(G + alpha * deltaG)

    return alpha, fc, f_val


def cg(a, b, M, reg, f, df, G0=None, numItermax=200, numItermaxEmd=100000,
       stopThr=1e-9, stopThr2=1e-9, verbose=False, log=False, **kwargs):
    """
    Solve the general regularized OT problem with conditional gradient

        The function solves the following optimization problem:

    .. math::
        \gamma = arg\min_\gamma <\gamma,M>_F + reg*f(\gamma)

        s.t. \gamma 1 = a

             \gamma^T 1= b

             \gamma\geq 0
    where :

    - M is the (ns,nt) metric cost matrix
    - :math:`f` is the regularization term ( and df is its gradient)
    - a and b are source and target weights (sum to 1)

    The algorithm used for solving the problem is conditional gradient as discussed in  [1]_


    Parameters
    ----------
    a : ndarray, shape (ns,)
        samples weights in the source domain
    b : ndarray, shape (nt,)
        samples in the target domain
    M : ndarray, shape (ns, nt)
        loss matrix
    reg : float
        Regularization term >0
    G0 :  ndarray, shape (ns,nt), optional
        initial guess (default is indep joint density)
    numItermax : int, optional
        Max number of iterations
    numItermaxEmd : int, optional
        Max number of iterations for emd
    stopThr : float, optional
        Stop threshol on the relative variation (>0)
    stopThr2 : float, optional
        Stop threshol on the absolute variation (>0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        record log if True
    **kwargs : dict
             Parameters for linesearch

    Returns
    -------
    gamma : (ns x nt) ndarray
        Optimal transportation matrix for the given parameters
    log : dict
        log dictionary return only if log==True in parameters


    References
    ----------

    .. [1] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014). Regularized discrete optimal transport. SIAM Journal on Imaging Sciences, 7(3), 1853-1882.

    See Also
    --------
    ot.lp.emd : Unregularized optimal ransport
    ot.bregman.sinkhorn : Entropic regularized optimal transport

    """

    loop = 1

    if log:
        log = {'loss': []}

    if G0 is None:
        G = np.outer(a, b)
    else:
        G = G0

    def cost(G):
        return np.sum(M * G) + reg * f(G)

    f_val = cost(G)
    if log:
        log['loss'].append(f_val)

    it = 0

    if verbose:
        print('{:5s}|{:12s}|{:8s}|{:8s}'.format(
            'It.', 'Loss', 'Relative loss', 'Absolute loss') + '\n' + '-' * 48)
        print('{:5d}|{:8e}|{:8e}|{:8e}'.format(it, f_val, 0, 0))

    while loop:

        it += 1
        old_fval = f_val

        # problem linearization
        Mi = M + reg * df(G)
        # set M positive
        Mi += Mi.min()

        # solve linear program
        Gc = emd(a, b, Mi, numItermax=numItermaxEmd)

        deltaG = Gc - G

        # line search
        alpha, fc, f_val = solve_linesearch(cost, G, deltaG, Mi, f_val, reg=reg, M=M, Gc=Gc, **kwargs)

        G = G + alpha * deltaG

        # test convergence
        if it >= numItermax:
            loop = 0

        abs_delta_fval = abs(f_val - old_fval)
        relative_delta_fval = abs_delta_fval / abs(f_val)
        if relative_delta_fval < stopThr or abs_delta_fval < stopThr2:
            loop = 0

        if log:
            log['loss'].append(f_val)

        if verbose:
            if it % 20 == 0:
                print('{:5s}|{:12s}|{:8s}|{:8s}'.format(
                    'It.', 'Loss', 'Relative loss', 'Absolute loss') + '\n' + '-' * 48)
            print('{:5d}|{:8e}|{:8e}|{:8e}'.format(it, f_val, relative_delta_fval, abs_delta_fval))

    if log:
        return G, log
    else:
        return G


def gcg(a, b, M, reg1, reg2, f, df, G0=None, numItermax=10,
        numInnerItermax=200, stopThr=1e-9, stopThr2=1e-9, verbose=False, log=False):
    """
    Solve the general regularized OT problem with the generalized conditional gradient

        The function solves the following optimization problem:

    .. math::
        \gamma = arg\min_\gamma <\gamma,M>_F + reg1\cdot\Omega(\gamma) + reg2\cdot f(\gamma)

        s.t. \gamma 1 = a

             \gamma^T 1= b

             \gamma\geq 0
    where :

    - M is the (ns,nt) metric cost matrix
    - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
    - :math:`f` is the regularization term ( and df is its gradient)
    - a and b are source and target weights (sum to 1)

    The algorithm used for solving the problem is the generalized conditional gradient as discussed in  [5,7]_


    Parameters
    ----------
    a : ndarray, shape (ns,)
        samples weights in the source domain
    b : ndarrayv (nt,)
        samples in the target domain
    M : ndarray, shape (ns, nt)
        loss matrix
    reg1 : float
        Entropic Regularization term >0
    reg2 : float
        Second Regularization term >0
    G0 : ndarray, shape (ns, nt), optional
        initial guess (default is indep joint density)
    numItermax : int, optional
        Max number of iterations
    numInnerItermax : int, optional
        Max number of iterations of Sinkhorn
    stopThr : float, optional
        Stop threshol on the relative variation (>0)
    stopThr2 : float, optional
        Stop threshol on the absolute variation (>0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        record log if True

    Returns
    -------
    gamma : ndarray, shape (ns, nt)
        Optimal transportation matrix for the given parameters
    log : dict
        log dictionary return only if log==True in parameters

    References
    ----------
    .. [5] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy, "Optimal Transport for Domain Adaptation," in IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PP, no.99, pp.1-1
    .. [7] Rakotomamonjy, A., Flamary, R., & Courty, N. (2015). Generalized conditional gradient: analysis of convergence and applications. arXiv preprint arXiv:1510.06567.

    See Also
    --------
    ot.optim.cg : conditional gradient

    """

    loop = 1

    if log:
        log = {'loss': []}

    if G0 is None:
        G = np.outer(a, b)
    else:
        G = G0

    def cost(G):
        return np.sum(M * G) + reg1 * np.sum(G * np.log(G)) + reg2 * f(G)

    f_val = cost(G)
    if log:
        log['loss'].append(f_val)

    it = 0

    if verbose:
        print('{:5s}|{:12s}|{:8s}|{:8s}'.format(
            'It.', 'Loss', 'Relative loss', 'Absolute loss') + '\n' + '-' * 48)
        print('{:5d}|{:8e}|{:8e}|{:8e}'.format(it, f_val, 0, 0))

    while loop:

        it += 1
        old_fval = f_val

        # problem linearization
        Mi = M + reg2 * df(G)

        # solve linear program with Sinkhorn
        # Gc = sinkhorn_stabilized(a,b, Mi, reg1, numItermax = numInnerItermax)
        Gc = sinkhorn(a, b, Mi, reg1, numItermax=numInnerItermax)

        deltaG = Gc - G

        # line search
        dcost = Mi + reg1 * (1 + np.log(G))  # ??
        alpha, fc, f_val = line_search_armijo(cost, G, deltaG, dcost, f_val)

        G = G + alpha * deltaG

        # test convergence
        if it >= numItermax:
            loop = 0

        abs_delta_fval = abs(f_val - old_fval)
        relative_delta_fval = abs_delta_fval / abs(f_val)

        if relative_delta_fval < stopThr or abs_delta_fval < stopThr2:
            loop = 0

        if log:
            log['loss'].append(f_val)

        if verbose:
            if it % 20 == 0:
                print('{:5s}|{:12s}|{:8s}|{:8s}'.format(
                    'It.', 'Loss', 'Relative loss', 'Absolute loss') + '\n' + '-' * 48)
            print('{:5d}|{:8e}|{:8e}|{:8e}'.format(it, f_val, relative_delta_fval, abs_delta_fval))

    if log:
        return G, log
    else:
        return G


def solve_1d_linesearch_quad(a, b, c):
    """
    For any convex or non-convex 1d quadratic function f, solve on [0,1] the following problem:
    .. math::
        \argmin f(x)=a*x^{2}+b*x+c

    Parameters
    ----------
    a,b,c : float
        The coefficients of the quadratic function

    Returns
    -------
    x : float
        The optimal value which leads to the minimal cost
    """
    f0 = c
    df0 = b
    f1 = a + f0 + df0

    if a > 0:  # convex
        minimum = min(1, max(0, np.divide(-b, 2.0 * a)))
        return minimum
    else:  # non convex
        if f0 > f1:
            return 1
        else:
            return 0