summaryrefslogtreecommitdiff
path: root/ot/optim.py
blob: 58e559675b159ec7fd7b00bf2df59a34a4da8ec4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
# -*- coding: utf-8 -*-
"""
Generic solvers for regularized OT or its semi-relaxed version.
"""

# Author: Remi Flamary <remi.flamary@unice.fr>
#         Titouan Vayer <titouan.vayer@irisa.fr>
#         Cédric Vincent-Cuaz <cedvincentcuaz@gmail.com>
# License: MIT License

import numpy as np
import warnings
from .lp import emd
from .bregman import sinkhorn
from .utils import list_to_array
from .backend import get_backend

with warnings.catch_warnings():
    warnings.simplefilter("ignore")
    try:
        from scipy.optimize import scalar_search_armijo
    except ImportError:
        from scipy.optimize.linesearch import scalar_search_armijo

# The corresponding scipy function does not work for matrices


def line_search_armijo(
    f, xk, pk, gfk, old_fval, args=(), c1=1e-4,
    alpha0=0.99, alpha_min=None, alpha_max=None, nx=None, **kwargs
):
    r"""
    Armijo linesearch function that works with matrices

    Find an approximate minimum of :math:`f(x_k + \alpha \cdot p_k)` that satisfies the
    armijo conditions.

    .. note:: If the loss function f returns a float (resp. a 1d array) then
        the returned alpha and fa are float (resp. 1d arrays).

    Parameters
    ----------
    f : callable
        loss function
    xk : array-like
        initial position
    pk : array-like
        descent direction
    gfk : array-like
        gradient of `f` at :math:`x_k`
    old_fval : float or 1d array
        loss value at :math:`x_k`
    args : tuple, optional
        arguments given to `f`
    c1 : float, optional
        :math:`c_1` const in armijo rule (>0)
    alpha0 : float, optional
        initial step (>0)
    alpha_min : float, optional
        minimum value for alpha
    alpha_max : float, optional
        maximum value for alpha
    nx : backend, optional
        If let to its default value None, a backend test will be conducted.
    Returns
    -------
    alpha : float or 1d array
        step that satisfy armijo conditions
    fc : int
        nb of function call
    fa : float or 1d array
        loss value at step alpha

    """
    if nx is None:
        xk, pk, gfk = list_to_array(xk, pk, gfk)
        xk0, pk0 = xk, pk
        nx = get_backend(xk0, pk0)
    else:
        xk0, pk0 = xk, pk

    if len(xk.shape) == 0:
        xk = nx.reshape(xk, (-1,))

    xk = nx.to_numpy(xk)
    pk = nx.to_numpy(pk)
    gfk = nx.to_numpy(gfk)

    fc = [0]

    def phi(alpha1):
        # The callable function operates on nx backend
        fc[0] += 1
        alpha10 = nx.from_numpy(alpha1)
        fval = f(xk0 + alpha10 * pk0, *args)
        if type(fval) is float:
            # prevent bug from nx.to_numpy that can look for .cpu or .gpu
            return fval
        else:
            return nx.to_numpy(fval)

    if old_fval is None:
        phi0 = phi(0.)
    elif type(old_fval) is float:
        # prevent bug from nx.to_numpy that can look for .cpu or .gpu
        phi0 = old_fval
    else:
        phi0 = nx.to_numpy(old_fval)

    derphi0 = np.sum(pk * gfk)  # Quickfix for matrices
    alpha, phi1 = scalar_search_armijo(
        phi, phi0, derphi0, c1=c1, alpha0=alpha0)

    if alpha is None:
        return 0., fc[0], nx.from_numpy(phi0, type_as=xk0)
    else:
        if alpha_min is not None or alpha_max is not None:
            alpha = np.clip(alpha, alpha_min, alpha_max)
        return nx.from_numpy(alpha, type_as=xk0), fc[0], nx.from_numpy(phi1, type_as=xk0)


def generic_conditional_gradient(a, b, M, f, df, reg1, reg2, lp_solver, line_search, G0=None,
                                 numItermax=200, stopThr=1e-9,
                                 stopThr2=1e-9, verbose=False, log=False, **kwargs):
    r"""
    Solve the general regularized OT problem or its semi-relaxed version with
    conditional gradient or generalized conditional gradient depending on the
    provided linear program solver.

        The function solves the following optimization problem if set as a conditional gradient:

    .. math::
        \gamma = \mathop{\arg \min}_\gamma \quad \langle \gamma, \mathbf{M} \rangle_F +
        \mathrm{reg_1} \cdot f(\gamma)

        s.t. \ \gamma \mathbf{1} &= \mathbf{a}

             \gamma^T \mathbf{1} &= \mathbf{b} (optional constraint)

             \gamma &\geq 0
    where :

    - :math:`\mathbf{M}` is the (`ns`, `nt`) metric cost matrix
    - :math:`f` is the regularization term (and `df` is its gradient)
    - :math:`\mathbf{a}` and :math:`\mathbf{b}` are source and target weights (sum to 1)

    The algorithm used for solving the problem is conditional gradient as discussed in :ref:`[1] <references-cg>`

        The function solves the following optimization problem if set a generalized conditional gradient:

    .. math::
        \gamma = \mathop{\arg \min}_\gamma \quad \langle \gamma, \mathbf{M} \rangle_F +
        \mathrm{reg_1}\cdot f(\gamma) + \mathrm{reg_2}\cdot\Omega(\gamma)

        s.t. \ \gamma \mathbf{1} &= \mathbf{a}

             \gamma^T \mathbf{1} &= \mathbf{b}

             \gamma &\geq 0
    where :

    - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`

    The algorithm used for solving the problem is the generalized conditional gradient as discussed in :ref:`[5, 7] <references-gcg>`

    Parameters
    ----------
    a : array-like, shape (ns,)
        samples weights in the source domain
    b : array-like, shape (nt,)
        samples weights in the target domain
    M : array-like, shape (ns, nt)
        loss matrix
    f : function
        Regularization function taking a transportation matrix as argument
    df: function
        Gradient of the regularization function taking a transportation matrix as argument
    reg1 : float
        Regularization term >0
    reg2 : float,
        Entropic Regularization term >0. Ignored if set to None.
    lp_solver: function,
        linear program solver for direction finding of the (generalized) conditional gradient.
        If set to emd will solve the general regularized OT problem using cg.
        If set to lp_semi_relaxed_OT will solve the general regularized semi-relaxed OT problem using cg.
        If set to sinkhorn will solve the general regularized OT problem using generalized cg.
    line_search: function,
        Function to find the optimal step. Currently used instances are:
        line_search_armijo (generic solver). solve_gromov_linesearch for (F)GW problem.
        solve_semirelaxed_gromov_linesearch for sr(F)GW problem. gcg_linesearch for the Generalized cg.
    G0 :  array-like, shape (ns,nt), optional
        initial guess (default is indep joint density)
    numItermax : int, optional
        Max number of iterations
    stopThr : float, optional
        Stop threshold on the relative variation (>0)
    stopThr2 : float, optional
        Stop threshold on the absolute variation (>0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        record log if True
    **kwargs : dict
             Parameters for linesearch

    Returns
    -------
    gamma : (ns x nt) ndarray
        Optimal transportation matrix for the given parameters
    log : dict
        log dictionary return only if log==True in parameters


    .. _references-cg:
    .. _references_gcg:
    References
    ----------

    .. [1] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014). Regularized discrete optimal transport. SIAM Journal on Imaging Sciences, 7(3), 1853-1882.

    .. [5] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy, "Optimal Transport for Domain Adaptation," in IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PP, no.99, pp.1-1

    .. [7] Rakotomamonjy, A., Flamary, R., & Courty, N. (2015). Generalized conditional gradient: analysis of convergence and applications. arXiv preprint arXiv:1510.06567.

    See Also
    --------
    ot.lp.emd : Unregularized optimal ransport
    ot.bregman.sinkhorn : Entropic regularized optimal transport
    """
    a, b, M, G0 = list_to_array(a, b, M, G0)
    if isinstance(M, int) or isinstance(M, float):
        nx = get_backend(a, b)
    else:
        nx = get_backend(a, b, M)

    loop = 1

    if log:
        log = {'loss': []}

    if G0 is None:
        G = nx.outer(a, b)
    else:
        # to not change G0 in place.
        G = nx.copy(G0)

    if reg2 is None:
        def cost(G):
            return nx.sum(M * G) + reg1 * f(G)
    else:
        def cost(G):
            return nx.sum(M * G) + reg1 * f(G) + reg2 * nx.sum(G * nx.log(G))
    cost_G = cost(G)
    if log:
        log['loss'].append(cost_G)

    it = 0

    if verbose:
        print('{:5s}|{:12s}|{:8s}|{:8s}'.format(
            'It.', 'Loss', 'Relative loss', 'Absolute loss') + '\n' + '-' * 48)
        print('{:5d}|{:8e}|{:8e}|{:8e}'.format(it, cost_G, 0, 0))

    while loop:

        it += 1
        old_cost_G = cost_G
        # problem linearization
        Mi = M + reg1 * df(G)

        if not (reg2 is None):
            Mi = Mi + reg2 * (1 + nx.log(G))
        # set M positive
        Mi = Mi + nx.min(Mi)

        # solve linear program
        Gc, innerlog_ = lp_solver(a, b, Mi, **kwargs)

        # line search
        deltaG = Gc - G

        alpha, fc, cost_G = line_search(cost, G, deltaG, Mi, cost_G, **kwargs)

        G = G + alpha * deltaG

        # test convergence
        if it >= numItermax:
            loop = 0

        abs_delta_cost_G = abs(cost_G - old_cost_G)
        relative_delta_cost_G = abs_delta_cost_G / abs(cost_G)
        if relative_delta_cost_G < stopThr or abs_delta_cost_G < stopThr2:
            loop = 0

        if log:
            log['loss'].append(cost_G)

        if verbose:
            if it % 20 == 0:
                print('{:5s}|{:12s}|{:8s}|{:8s}'.format(
                    'It.', 'Loss', 'Relative loss', 'Absolute loss') + '\n' + '-' * 48)
            print('{:5d}|{:8e}|{:8e}|{:8e}'.format(it, cost_G, relative_delta_cost_G, abs_delta_cost_G))

    if log:
        log.update(innerlog_)
        return G, log
    else:
        return G


def cg(a, b, M, reg, f, df, G0=None, line_search=line_search_armijo,
       numItermax=200, numItermaxEmd=100000, stopThr=1e-9, stopThr2=1e-9,
       verbose=False, log=False, **kwargs):
    r"""
    Solve the general regularized OT problem with conditional gradient

        The function solves the following optimization problem:

    .. math::
        \gamma = \mathop{\arg \min}_\gamma \quad \langle \gamma, \mathbf{M} \rangle_F +
        \mathrm{reg} \cdot f(\gamma)

        s.t. \ \gamma \mathbf{1} &= \mathbf{a}

             \gamma^T \mathbf{1} &= \mathbf{b}

             \gamma &\geq 0
    where :

    - :math:`\mathbf{M}` is the (`ns`, `nt`) metric cost matrix
    - :math:`f` is the regularization term (and `df` is its gradient)
    - :math:`\mathbf{a}` and :math:`\mathbf{b}` are source and target weights (sum to 1)

    The algorithm used for solving the problem is conditional gradient as discussed in :ref:`[1] <references-cg>`


    Parameters
    ----------
    a : array-like, shape (ns,)
        samples weights in the source domain
    b : array-like, shape (nt,)
        samples in the target domain
    M : array-like, shape (ns, nt)
        loss matrix
    reg : float
        Regularization term >0
    G0 :  array-like, shape (ns,nt), optional
        initial guess (default is indep joint density)
    line_search: function,
        Function to find the optimal step.
        Default is line_search_armijo.
    numItermax : int, optional
        Max number of iterations
    numItermaxEmd : int, optional
        Max number of iterations for emd
    stopThr : float, optional
        Stop threshold on the relative variation (>0)
    stopThr2 : float, optional
        Stop threshold on the absolute variation (>0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        record log if True
    **kwargs : dict
             Parameters for linesearch

    Returns
    -------
    gamma : (ns x nt) ndarray
        Optimal transportation matrix for the given parameters
    log : dict
        log dictionary return only if log==True in parameters


    .. _references-cg:
    References
    ----------

    .. [1] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014). Regularized discrete optimal transport. SIAM Journal on Imaging Sciences, 7(3), 1853-1882.

    See Also
    --------
    ot.lp.emd : Unregularized optimal ransport
    ot.bregman.sinkhorn : Entropic regularized optimal transport

    """

    def lp_solver(a, b, M, **kwargs):
        return emd(a, b, M, numItermaxEmd, log=True)

    return generic_conditional_gradient(a, b, M, f, df, reg, None, lp_solver, line_search, G0=G0,
                                        numItermax=numItermax, stopThr=stopThr,
                                        stopThr2=stopThr2, verbose=verbose, log=log, **kwargs)


def semirelaxed_cg(a, b, M, reg, f, df, G0=None, line_search=line_search_armijo,
                   numItermax=200, stopThr=1e-9, stopThr2=1e-9, verbose=False, log=False, **kwargs):
    r"""
    Solve the general regularized and semi-relaxed OT problem with conditional gradient

        The function solves the following optimization problem:

    .. math::
        \gamma = \mathop{\arg \min}_\gamma \quad \langle \gamma, \mathbf{M} \rangle_F +
        \mathrm{reg} \cdot f(\gamma)

        s.t. \ \gamma \mathbf{1} &= \mathbf{a}

             \gamma &\geq 0
    where :

    - :math:`\mathbf{M}` is the (`ns`, `nt`) metric cost matrix
    - :math:`f` is the regularization term (and `df` is its gradient)
    - :math:`\mathbf{a}` and :math:`\mathbf{b}` are source and target weights (sum to 1)

    The algorithm used for solving the problem is conditional gradient as discussed in :ref:`[1] <references-cg>`


    Parameters
    ----------
    a : array-like, shape (ns,)
        samples weights in the source domain
    b : array-like, shape (nt,)
        currently estimated samples weights in the target domain
    M : array-like, shape (ns, nt)
        loss matrix
    reg : float
        Regularization term >0
    G0 :  array-like, shape (ns,nt), optional
        initial guess (default is indep joint density)
    line_search: function,
        Function to find the optimal step.
        Default is the armijo line-search.
    numItermax : int, optional
        Max number of iterations
    stopThr : float, optional
        Stop threshold on the relative variation (>0)
    stopThr2 : float, optional
        Stop threshold on the absolute variation (>0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        record log if True
    **kwargs : dict
             Parameters for linesearch

    Returns
    -------
    gamma : (ns x nt) ndarray
        Optimal transportation matrix for the given parameters
    log : dict
        log dictionary return only if log==True in parameters


    .. _references-cg:
    References
    ----------

    .. [48]  Cédric Vincent-Cuaz, Rémi Flamary, Marco Corneli, Titouan Vayer, Nicolas Courty.
            "Semi-relaxed Gromov-Wasserstein divergence and applications on graphs"
            International Conference on Learning Representations (ICLR), 2021.

    """

    nx = get_backend(a, b)

    def lp_solver(a, b, Mi, **kwargs):
        # get minimum by rows as binary mask
        Gc = nx.ones(1, type_as=a) * (Mi == nx.reshape(nx.min(Mi, axis=1), (-1, 1)))
        Gc *= nx.reshape((a / nx.sum(Gc, axis=1)), (-1, 1))
        # return by default an empty inner_log
        return Gc, {}

    return generic_conditional_gradient(a, b, M, f, df, reg, None, lp_solver, line_search, G0=G0,
                                        numItermax=numItermax, stopThr=stopThr,
                                        stopThr2=stopThr2, verbose=verbose, log=log, **kwargs)


def gcg(a, b, M, reg1, reg2, f, df, G0=None, numItermax=10,
        numInnerItermax=200, stopThr=1e-9, stopThr2=1e-9, verbose=False, log=False, **kwargs):
    r"""
    Solve the general regularized OT problem with the generalized conditional gradient

        The function solves the following optimization problem:

    .. math::
        \gamma = \mathop{\arg \min}_\gamma \quad \langle \gamma, \mathbf{M} \rangle_F +
        \mathrm{reg_1}\cdot\Omega(\gamma) + \mathrm{reg_2}\cdot f(\gamma)

        s.t. \ \gamma \mathbf{1} &= \mathbf{a}

             \gamma^T \mathbf{1} &= \mathbf{b}

             \gamma &\geq 0
    where :

    - :math:`\mathbf{M}` is the (`ns`, `nt`) metric cost matrix
    - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
    - :math:`f` is the regularization term (and `df` is its gradient)
    - :math:`\mathbf{a}` and :math:`\mathbf{b}` are source and target weights (sum to 1)

    The algorithm used for solving the problem is the generalized conditional gradient as discussed in :ref:`[5, 7] <references-gcg>`


    Parameters
    ----------
    a : array-like, shape (ns,)
        samples weights in the source domain
    b : array-like, (nt,)
        samples in the target domain
    M : array-like, shape (ns, nt)
        loss matrix
    reg1 : float
        Entropic Regularization term >0
    reg2 : float
        Second Regularization term >0
    G0 : array-like, shape (ns, nt), optional
        initial guess (default is indep joint density)
    numItermax : int, optional
        Max number of iterations
    numInnerItermax : int, optional
        Max number of iterations of Sinkhorn
    stopThr : float, optional
        Stop threshold on the relative variation (>0)
    stopThr2 : float, optional
        Stop threshold on the absolute variation (>0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        record log if True

    Returns
    -------
    gamma : ndarray, shape (ns, nt)
        Optimal transportation matrix for the given parameters
    log : dict
        log dictionary return only if log==True in parameters


    .. _references-gcg:
    References
    ----------

    .. [5] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy, "Optimal Transport for Domain Adaptation," in IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PP, no.99, pp.1-1

    .. [7] Rakotomamonjy, A., Flamary, R., & Courty, N. (2015). Generalized conditional gradient: analysis of convergence and applications. arXiv preprint arXiv:1510.06567.

    See Also
    --------
    ot.optim.cg : conditional gradient

    """

    def lp_solver(a, b, Mi, **kwargs):
        return sinkhorn(a, b, Mi, reg1, numItermax=numInnerItermax, log=True, **kwargs)

    def line_search(cost, G, deltaG, Mi, cost_G, **kwargs):
        return line_search_armijo(cost, G, deltaG, Mi, cost_G, **kwargs)

    return generic_conditional_gradient(a, b, M, f, df, reg2, reg1, lp_solver, line_search, G0=G0,
                                        numItermax=numItermax, stopThr=stopThr, stopThr2=stopThr2, verbose=verbose, log=log, **kwargs)


def solve_1d_linesearch_quad(a, b):
    r"""
    For any convex or non-convex 1d quadratic function `f`, solve the following problem:

    .. math::

        \mathop{\arg \min}_{0 \leq x \leq 1} \quad f(x) = ax^{2} + bx + c

    Parameters
    ----------
    a,b : float or tensors (1,)
        The coefficients of the quadratic function

    Returns
    -------
    x : float
        The optimal value which leads to the minimal cost
    """
    if a > 0:  # convex
        minimum = min(1., max(0., -b / (2.0 * a)))
        return minimum
    else:  # non convex
        if a + b < 0:
            return 1.
        else:
            return 0.