summaryrefslogtreecommitdiff
path: root/ot/regpath.py
blob: e745288e1d18f5bc987b508571ab368ed98fe10a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
# -*- coding: utf-8 -*-
"""
Regularization path OT solvers
"""

# Author: Haoran Wu <haoran.wu@univ-ubs.fr>
# License: MIT License

import numpy as np
import scipy.sparse as sp


def recast_ot_as_lasso(a, b, C):
    r"""This function recasts the l2-penalized UOT problem as a Lasso problem.

    Recall the l2-penalized UOT problem defined in
    :ref:`[41] <references-regpath>`

    .. math::
        \text{UOT}_{\lambda} = \min_T <C, T> + \lambda \|T 1_m -
                                \mathbf{a}\|_2^2 +
                                \lambda \|T^T 1_n - \mathbf{b}\|_2^2

        s.t.
            T \geq 0

    where :

    - :math:`C` is the cost matrix
    - :math:`\lambda` is the l2-regularization parameter
    - :math:`\mathbf{a}` and :math:`\mathbf{b}` are the source and target \
      distributions
    - :math:`T` is the transport plan to optimize

    The problem above can be reformulated as a non-negative penalized
    linear regression problem, particularly Lasso

    .. math::
        \text{UOT2}_{\lambda} = \min_{\mathbf{t}} \gamma \mathbf{c}^T
        \mathbf{t} + 0.5 * \|H \mathbf{t} - \mathbf{y}\|_2^2

        s.t.
            \mathbf{t} \geq 0

    where :

    - :math:`\mathbf{c}` is the flattened version of the cost matrix :math:`C`
    - :math:`\mathbf{y}` is the concatenation of vectors :math:`\mathbf{a}` \
      and :math:`\mathbf{b}`
    - :math:`H` is a  metric matrix, see :ref:`[41] <references-regpath>` for \
      the design of :math:`H`. The matrix product :math:`H\mathbf{t}` \
      computes both the source marginal and the target marginals.
    - :math:`\mathbf{t}` is the flattened version of the transport plan \
      :math:`T`

    Parameters
    ----------
    a : np.ndarray (dim_a,)
        Histogram of dimension dim_a
    b : np.ndarray (dim_b,)
        Histogram of dimension dim_b
    C : np.ndarray, shape (dim_a, dim_b)
        Cost matrix

    Returns
    -------
    H : np.ndarray (dim_a+dim_b, dim_a*dim_b)
        Design matrix that contains only 0 and 1
    y : np.ndarray (ns + nt, )
        Concatenation of histograms :math:`\mathbf{a}` and :math:`\mathbf{b}`
    c : np.ndarray (ns * nt, )
        Flattened array of the cost matrix

    Examples
    --------
    >>> import ot
    >>> a = np.array([0.2, 0.3, 0.5])
    >>> b = np.array([0.1, 0.9])
    >>> C = np.array([[16., 25.], [28., 16.], [40., 36.]])
    >>> H, y, c = ot.regpath.recast_ot_as_lasso(a, b, C)
    >>> H.toarray()
    array([[1., 1., 0., 0., 0., 0.],
           [0., 0., 1., 1., 0., 0.],
           [0., 0., 0., 0., 1., 1.],
           [1., 0., 1., 0., 1., 0.],
           [0., 1., 0., 1., 0., 1.]])
    >>> y
    array([0.2, 0.3, 0.5, 0.1, 0.9])
    >>> c
    array([16., 25., 28., 16., 40., 36.])


    References
    ----------
    .. [41] Chapel, L., Flamary, R., Wu, H., Févotte, C., and Gasso, G. (2021).
        Unbalanced optimal transport through non-negative penalized
        linear regression. NeurIPS.
    """

    dim_a = np.shape(a)[0]
    dim_b = np.shape(b)[0]
    y = np.concatenate((a, b))
    c = C.flatten()
    jHa = np.arange(dim_a * dim_b)
    iHa = np.repeat(np.arange(dim_a), dim_b)
    jHb = np.arange(dim_a * dim_b)
    iHb = np.tile(np.arange(dim_b), dim_a) + dim_a
    j = np.concatenate((jHa, jHb))
    i = np.concatenate((iHa, iHb))
    H = sp.csc_matrix((np.ones(dim_a * dim_b * 2), (i, j)),
                      shape=(dim_a + dim_b, dim_a * dim_b))
    return H, y, c


def recast_semi_relaxed_as_lasso(a, b, C):
    r"""This function recasts the semi-relaxed l2-UOT problem as Lasso problem.

    .. math::

        \text{semi-relaxed UOT} = \min_T <C, T>
                                  + \lambda \|T 1_m - \mathbf{a}\|_2^2

        s.t.
            T^T 1_n = \mathbf{b}

            \mathbf{t} \geq 0

    where :

    - :math:`C` is the metric cost matrix
    - :math:`\lambda` is the l2-regularization parameter
    - :math:`\mathbf{a}` and :math:`\mathbf{b}` are the source and target \
      distributions
    - :math:`T` is the transport plan to optimize

    The problem above can be reformulated as follows

    .. math::
        \text{semi-relaxed UOT2} = \min_t \gamma \mathbf{c}^T t
                                   + 0.5 * \|H_r \mathbf{t} - \mathbf{a}\|_2^2

        s.t.
            H_c \mathbf{t} = \mathbf{b}

            \mathbf{t} \geq 0

    where :

    - :math:`\mathbf{c}` is flattened version of the cost matrix :math:`C`
    - :math:`\gamma = 1/\lambda` is the l2-regularization parameter
    - :math:`H_r` is  a  metric matrix which computes the sum along the \
      rows of the transport plan :math:`T`
    - :math:`H_c` is a  metric matrix which computes the sum along the \
      columns of the transport plan :math:`T`
    - :math:`\mathbf{t}` is the flattened version of :math:`T`

    Parameters
    ----------
    a : np.ndarray (dim_a,)
        Histogram of dimension dim_a
    b : np.ndarray (dim_b,)
        Histogram of dimension dim_b
    C : np.ndarray, shape (dim_a, dim_b)
        Cost matrix

    Returns
    -------
    Hr : np.ndarray (dim_a, dim_a * dim_b)
        Auxiliary matrix constituted by 0 and 1, which computes
        the sum along the rows of transport plan :math:`T`
    Hc : np.ndarray (dim_b, dim_a * dim_b)
        Auxiliary matrix constituted by 0 and 1, which computes
        the sum along the columns of transport plan :math:`T`
    c : np.ndarray (ns * nt, )
        Flattened array of the cost matrix

    Examples
    --------
    >>> import ot
    >>> a = np.array([0.2, 0.3, 0.5])
    >>> b = np.array([0.1, 0.9])
    >>> C = np.array([[16., 25.], [28., 16.], [40., 36.]])
    >>> Hr,Hc,c = ot.regpath.recast_semi_relaxed_as_lasso(a, b, C)
    >>> Hr.toarray()
    array([[1., 1., 0., 0., 0., 0.],
           [0., 0., 1., 1., 0., 0.],
           [0., 0., 0., 0., 1., 1.]])
    >>> Hc.toarray()
    array([[1., 0., 1., 0., 1., 0.],
           [0., 1., 0., 1., 0., 1.]])
    >>> c
    array([16., 25., 28., 16., 40., 36.])
    """

    dim_a = np.shape(a)[0]
    dim_b = np.shape(b)[0]

    c = C.flatten()
    jHr = np.arange(dim_a * dim_b)
    iHr = np.repeat(np.arange(dim_a), dim_b)
    jHc = np.arange(dim_a * dim_b)
    iHc = np.tile(np.arange(dim_b), dim_a)

    Hr = sp.csc_matrix((np.ones(dim_a * dim_b), (iHr, jHr)),
                       shape=(dim_a, dim_a * dim_b))
    Hc = sp.csc_matrix((np.ones(dim_a * dim_b), (iHc, jHc)),
                       shape=(dim_b, dim_a * dim_b))

    return Hr, Hc, c


def ot_next_gamma(phi, delta, HtH, Hty, c, active_index, current_gamma):
    r""" This function computes the next value of gamma if a variable
    is added in the next iteration of the regularization path.

    We look for the largest value of gamma such that
    the gradient of an inactive variable vanishes

    .. math::
        \max_{i \in \bar{A}} \frac{\mathbf{h}_i^T(H_A \phi - \mathbf{y})}
        {\mathbf{h}_i^T H_A \delta - \mathbf{c}_i}

    where :

    - A is the current active set
    - :math:`\mathbf{h}_i` is the :math:`i` th column of the design \
      matrix :math:`{H}`
    - :math:`{H}_A` is the sub-matrix constructed by the columns of \
      :math:`{H}` whose indices belong to the active set A
    - :math:`\mathbf{c}_i` is the :math:`i` th element of the cost vector \
      :math:`\mathbf{c}`
    - :math:`\mathbf{y}` is the concatenation of the source and target \
      distributions
    - :math:`\phi` is the intercept of the solutions at the current iteration
    - :math:`\delta` is the slope of the solutions at the current iteration

    Parameters
    ----------
    phi : np.ndarray (size(A), )
        Intercept of the solutions at the current iteration
    delta : np.ndarray (size(A), )
        Slope of the solutions at the current iteration
    HtH : np.ndarray (dim_a * dim_b, dim_a * dim_b)
        Matrix product of :math:`{H}^T {H}`
    Hty : np.ndarray (dim_a + dim_b, )
        Matrix product of :math:`{H}^T \mathbf{y}`
    c: np.ndarray (dim_a * dim_b, )
        Flattened array of the cost matrix :math:`{C}`
    active_index : list
        Indices of active variables
    current_gamma : float
        Value of the regularization parameter at the beginning of the current \
        iteration

    Returns
    -------
    next_gamma : float
        Value of gamma if a variable is added to active set in next iteration
    next_active_index : int
        Index of variable to be activated


    References
    ----------
    .. [41] Chapel, L., Flamary, R., Wu, H., Févotte, C., and Gasso, G. (2021).
        Unbalanced optimal transport through non-negative penalized
        linear regression. NeurIPS.
    """
    M = (HtH[:, active_index].dot(phi) - Hty) / \
        (HtH[:, active_index].dot(delta) - c + 1e-16)
    M[active_index] = 0
    M[M > (current_gamma - 1e-10 * current_gamma)] = 0
    return np.max(M), np.argmax(M)


def semi_relaxed_next_gamma(phi, delta, phi_u, delta_u, HrHr, Hc, Hra,
                            c, active_index, current_gamma):
    r""" This function computes the next value of gamma when a variable is
    active in the regularization path of semi-relaxed UOT.

    By taking the Lagrangian form of the problem, we obtain a similar update
    as the two-sided relaxed UOT

    .. math::

        \max_{i \in \bar{A}} \frac{\mathbf{h}_{ri}^T(H_{rA} \phi - \mathbf{a})
           + \mathbf{h}_{c i}^T\phi_u}{\mathbf{h}_{r i}^T H_{r A} \delta + \
            \mathbf{h}_{c i} \delta_u - \mathbf{c}_i}

    where :

    - A is the current active set
    - :math:`\mathbf{h}_{r i}` is the ith column of the matrix :math:`H_r`
    - :math:`\mathbf{h}_{c i}` is the ith column of the matrix :math:`H_c`
    - :math:`H_{r A}` is the sub-matrix constructed by the columns of \
      :math:`H_r` whose indices belong to the active set A
    - :math:`\mathbf{c}_i` is the :math:`i` th element of cost vector \
      :math:`\mathbf{c}`
    - :math:`\phi` is the intercept of the solutions in current iteration
    - :math:`\delta` is the slope of the solutions in current iteration
    - :math:`\phi_u` is the intercept of Lagrange parameter at the \
      current iteration
    - :math:`\delta_u` is the slope of Lagrange parameter at the \
      current iteration

    Parameters
    ----------
    phi : np.ndarray (size(A), )
        Intercept of the solutions at the current iteration
    delta : np.ndarray (size(A), )
        Slope of the solutions at the current iteration
    phi_u : np.ndarray (dim_b, )
        Intercept of the Lagrange parameter at the current iteration
    delta_u : np.ndarray (dim_b, )
        Slope of the Lagrange parameter at the current iteration
    HrHr : np.ndarray (dim_a * dim_b, dim_a * dim_b)
        Matrix product of :math:`H_r^T H_r`
    Hc : np.ndarray (dim_b, dim_a * dim_b)
        Matrix that computes the sum along the columns of the transport plan \
        :math:`T`
    Hra : np.ndarray (dim_a * dim_b, )
        Matrix product of :math:`H_r^T \mathbf{a}`
    c: np.ndarray (dim_a * dim_b, )
        Flattened array of cost matrix :math:`C`
    active_index : list
        Indices of active variables
    current_gamma : float
        Value of regularization coefficient at the start of current iteration

    Returns
    -------
    next_gamma : float
        Value of gamma if a variable is added to active set in next iteration
    next_active_index : int
        Index of variable to be activated

    References
    ----------
    .. [41] Chapel, L., Flamary, R., Wu, H., Févotte, C., and Gasso, G. (2021).
        Unbalanced optimal transport through non-negative penalized
        linear regression. NeurIPS.
    """

    M = (HrHr[:, active_index].dot(phi) - Hra + Hc.T.dot(phi_u)) / \
        (HrHr[:, active_index].dot(delta) - c + Hc.T.dot(delta_u) + 1e-16)
    M[active_index] = 0
    M[M > (current_gamma - 1e-10 * current_gamma)] = 0
    return np.max(M), np.argmax(M)


def compute_next_removal(phi, delta, current_gamma):
    r""" This function computes the next gamma value if a variable
    is removed at the next iteration of the regularization path.

    We look for the largest value of the regularization parameter such that
    an element of the current solution vanishes

    .. math::
        \max_{j \in A} \frac{\phi_j}{\delta_j}

    where :

    - A is the current active set
    - :math:`\phi_j` is the :math:`j` th element of the intercept of the \
      current solution
    - :math:`\delta_j` is the :math:`j` th element of the slope of the \
      current solution


    Parameters
    ----------
    phi : ndarray, shape (size(A), )
        Intercept of the solution at the current iteration
    delta : ndarray, shape (size(A), )
        Slope of the solution at the current iteration
    current_gamma : float
        Value of the regularization parameter at the beginning of the \
        current iteration

    Returns
    -------
    next_removal_gamma : float
        Gamma value if a variable is removed at the next iteration
    next_removal_index : int
        Index of the variable to be removed at the next iteration


    .. _references-regpath:
    References
    ----------
    .. [41] Chapel, L., Flamary, R., Wu, H., Févotte, C., and Gasso, G. (2021).
        Unbalanced optimal transport through non-negative penalized
        linear regression. NeurIPS.
    """
    r_candidate = phi / (delta - 1e-16)
    r_candidate[r_candidate >= (1 - 1e-8) * current_gamma] = 0
    return np.max(r_candidate), np.argmax(r_candidate)


def complement_schur(M_current, b, d, id_pop):
    r""" This function computes the inverse of the design matrix in the \
    regularization path using the  Schur complement. Two cases may arise:

    Case 1: one variable is added to the active set


    .. math::
        M_{k+1}^{-1} =
        \begin{bmatrix}
            M_{k}^{-1} + s^{-1} M_{k}^{-1} \mathbf{b} \mathbf{b}^T M_{k}^{-1} \
            & - M_{k}^{-1} \mathbf{b} s^{-1}   \\
            - s^{-1} \mathbf{b}^T M_{k}^{-1} & s^{-1}
        \end{bmatrix}


    where :

    - :math:`M_k^{-1}` is the inverse of the design matrix :math:`H_A^tH_A` \
      of the previous iteration
    - :math:`\mathbf{b}` is the last column of :math:`M_{k}`
    - :math:`s` is the Schur complement, given by  \
      :math:`s = \mathbf{d} - \mathbf{b}^T M_{k}^{-1} \mathbf{b}`

    Case 2: one variable is removed from the active set.

    .. math::
        M_{k+1}^{-1} = M^{-1}_{k \backslash q} -
                       \frac{r_{-q,q} r^{T}_{-q,q}}{r_{q,q}}

    where :

    - :math:`q` is the index of column and row to delete
    - :math:`M^{-1}_{k \backslash q}` is the previous inverse matrix deprived \
      of the :math:`q` th column and :math:`q` th row
    - :math:`r_{-q,q}` is the :math:`q` th column of :math:`M^{-1}_{k}` \
      without the :math:`q` th element
    - :math:`r_{q, q}` is the element of :math:`q` th column and :math:`q` th \
      row in :math:`M^{-1}_{k}`


    Parameters
    ----------
    M_current : ndarray, shape (size(A)-1, size(A)-1)
        Inverse matrix of :math:`H_A^tH_A` at the previous iteration, with \
        size(A) the size of the active set
    b : ndarray, shape (size(A)-1, )
        None for case 2 (removal), last column of :math:`M_{k}` for case 1 \
        (addition)
    d : float
        should be equal to 2 when UOT and 1 for the semi-relaxed OT
    id_pop : int
        Index of the variable to be removed,  equal to -1
        if no variable is deleted at the current iteration


    Returns
    -------
    M : ndarray, shape (size(A), size(A))
        Inverse matrix of :math:`H_A^tH_A` of the current iteration


    References
    ----------
    .. [41] Chapel, L., Flamary, R., Wu, H., Févotte, C., and Gasso, G. (2021).
        Unbalanced optimal transport through non-negative penalized
        linear regression. NeurIPS.
    """

    if b is None:
        b = M_current[id_pop, :]
        b = np.delete(b, id_pop)
        M_del = np.delete(M_current, id_pop, 0)
        a = M_del[:, id_pop]
        M_del = np.delete(M_del, id_pop, 1)
        M = M_del - np.outer(a, b) / M_current[id_pop, id_pop]
    else:
        n = b.shape[0] + 1
        if np.shape(b)[0] == 0:
            M = np.array([[0.5]])
        else:
            X = M_current.dot(b)
            s = d - b.T.dot(X)
            M = np.zeros((n, n))
            M[:-1, :-1] = M_current + X.dot(X.T) / s
            X_ravel = X.ravel()
            M[-1, :-1] = -X_ravel / s
            M[:-1, -1] = -X_ravel / s
            M[-1, -1] = 1 / s
    return M


def construct_augmented_H(active_index, m, Hc, HrHr):
    r""" This function constructs an augmented matrix for the first iteration
    of the semi-relaxed regularization path

    .. math::
        \text{Augmented}_H =
        \begin{bmatrix}
            0 & H_{c A} \\
            H_{c A}^T & H_{r A}^T H_{r A}
        \end{bmatrix}

    where :

    - :math:`H_{r A}` is the sub-matrix constructed by the columns of \
      :math:`H_r` whose indices belong to the active set A
    - :math:`H_{c A}` is the sub-matrix constructed by the columns of \
      :math:`H_c` whose indices belong to the active set A


    Parameters
    ----------
    active_index : list
        Indices of the active variables
    m : int
        Length of the target distribution
    Hc : np.ndarray (dim_b, dim_a * dim_b)
        Matrix that computes the sum along the columns of the transport plan \
        :math:`T`
    HrHr : np.ndarray (dim_a * dim_b, dim_a * dim_b)
        Matrix product of :math:`H_r^T H_r`

    Returns
    -------
    H_augmented : np.ndarray (dim_b + size(A), dim_b + size(A))
        Augmented matrix for the first iteration of the semi-relaxed
        regularization path
    """
    Hc_sub = Hc[:, active_index].toarray()
    HrHr_sub = HrHr[:, active_index]
    HrHr_sub = HrHr_sub[active_index, :].toarray()
    H_augmented = np.block([[np.zeros((m, m)), Hc_sub], [Hc_sub.T, HrHr_sub]])
    return H_augmented


def fully_relaxed_path(a: np.array, b: np.array, C: np.array, reg=1e-4,
                       itmax=50000):
    r"""This function gives the regularization path of l2-penalized UOT problem

    The problem to optimize is the Lasso reformulation of the l2-penalized UOT:

    .. math::
        \min_t \gamma \mathbf{c}^T \mathbf{t}
               + 0.5 * \|{H} \mathbf{t} - \mathbf{y}\|_2^2

        s.t.
            \mathbf{t} \geq 0

    where :

    - :math:`\mathbf{c}` is the flattened version of the cost matrix \
      :math:`{C}`
    - :math:`\gamma = 1/\lambda` is the l2-regularization coefficient
    - :math:`\mathbf{y}` is the concatenation of vectors :math:`\mathbf{a}` \
      and :math:`\mathbf{b}`, defined as \
      :math:`\mathbf{y}^T = [\mathbf{a}^T \mathbf{b}^T]`
    - :math:`{H}` is a design matrix, see :ref:`[41] <references-regpath>` \
      for the design of :math:`{H}`. The matrix product :math:`H\mathbf{t}` \
      computes both the source marginal and the target marginals.
    - :math:`\mathbf{t}` is the flattened version of the transport matrix

    Parameters
    ----------
    a : np.ndarray (dim_a,)
        Histogram of dimension dim_a
    b : np.ndarray (dim_b,)
        Histogram of dimension dim_b
    C : np.ndarray, shape (dim_a, dim_b)
        Cost matrix
    reg: float
        l2-regularization coefficient
    itmax: int
        Maximum number of iteration
    Returns
    -------
    t : np.ndarray (dim_a*dim_b, )
        Flattened vector of the optimal transport matrix
    t_list : list
        List of solutions in the regularization path
    gamma_list : list
        List of regularization coefficients in the regularization path

    Examples
    --------
    >>> import ot
    >>> import numpy as np
    >>> n = 3
    >>> xs = np.array([1., 2., 3.]).reshape((n, 1))
    >>> xt = np.array([5., 6., 7.]).reshape((n, 1))
    >>> C = ot.dist(xs, xt)
    >>> C /= C.max()
    >>> a = np.array([0.2, 0.5, 0.3])
    >>> b = np.array([0.2, 0.5, 0.3])
    >>> t, _, _ = ot.regpath.fully_relaxed_path(a, b, C, 1e-4)
    >>> t
    array([1.99958333e-01, 0.00000000e+00, 0.00000000e+00, 3.88888889e-05,
           4.99938889e-01, 0.00000000e+00, 0.00000000e+00, 3.88888889e-05,
           2.99958333e-01])

    References
    ----------
    .. [41] Chapel, L., Flamary, R., Wu, H., Févotte, C., and Gasso, G. (2021).
        Unbalanced optimal transport through non-negative penalized
        linear regression. NeurIPS.
    """

    n = np.shape(a)[0]
    m = np.shape(b)[0]
    H, y, c = recast_ot_as_lasso(a, b, C)
    HtH = H.T.dot(H)
    Hty = H.T.dot(y)
    n_iter = 1

    # initialization
    M0 = Hty / c
    gamma_list = [np.max(M0)]
    active_index = [np.argmax(M0)]
    t_list = [np.zeros((n * m,))]
    H_inv = np.array([[]])
    add_col = np.array([])
    id_pop = -1

    while n_iter < itmax and gamma_list[-1] > reg:
        H_inv = complement_schur(H_inv, add_col, 2., id_pop)
        current_gamma = gamma_list[-1]

        # compute the intercept and slope of solutions in current iteration
        # t = phi - gamma * delta
        phi = H_inv.dot(Hty[active_index])
        delta = H_inv.dot(c[active_index])
        gamma, ik = ot_next_gamma(phi, delta, HtH, Hty, c, active_index,
                                  current_gamma)

        # compute the next lambda when removing a point from the active set
        alt_gamma, id_pop = compute_next_removal(phi, delta, current_gamma)

        # if the positivity constraint is violated, we remove id_pop
        # from active set, otherwise we add ik to active set
        if alt_gamma > gamma:
            gamma = alt_gamma
        else:
            id_pop = -1

        # compute the solution of current segment
        tA = phi - gamma * delta
        sol = np.zeros((n * m, ))
        sol[active_index] = tA

        if id_pop != -1:
            active_index.pop(id_pop)
            add_col = None
        else:
            active_index.append(ik)
            add_col = HtH[active_index[:-1], ik].toarray()

        gamma_list.append(gamma)
        t_list.append(sol)
        n_iter += 1

    if itmax <= n_iter:
        print('maximum iteration has been reached !')

    # correct the last solution and gamma
    if len(t_list) > 1:
        t_final = (t_list[-2] + (t_list[-1] - t_list[-2]) *
                   (reg - gamma_list[-2]) / (gamma_list[-1] - gamma_list[-2]))
        t_list[-1] = t_final
        gamma_list[-1] = reg
    else:
        gamma_list[-1] = reg
        print('Regularization path does not exist !')

    return t_list[-1], t_list, gamma_list


def semi_relaxed_path(a: np.array, b: np.array, C: np.array, reg=1e-4,
                      itmax=50000):
    r"""This function gives the regularization path of semi-relaxed
    l2-UOT problem.

    The problem to optimize is the Lasso reformulation of the l2-penalized UOT:

    .. math::

        \min_t \gamma \mathbf{c}^T t
               + 0.5 * \|H_r \mathbf{t} - \mathbf{a}\|_2^2

        s.t.
            H_c \mathbf{t} = \mathbf{b}

            \mathbf{t} \geq 0

    where :

    - :math:`\mathbf{c}` is the flattened version of the cost matrix \
      :math:`C`
    - :math:`\gamma = 1/\lambda` is the l2-regularization parameter
    - :math:`H_r` is  a  matrix that computes the sum along the rows of \
      the transport plan :math:`T`
    - :math:`H_c` is  a  matrix that computes the sum along the columns of \
      the transport plan :math:`T`
    - :math:`\mathbf{t}` is the flattened version of the transport plan \
      :math:`T`

    Parameters
    ----------
    a : np.ndarray (dim_a,)
        Histogram of dimension dim_a
    b : np.ndarray (dim_b,)
        Histogram of dimension dim_b
    C : np.ndarray, shape (dim_a, dim_b)
        Cost matrix
    reg: float (optional)
        l2-regularization coefficient
    itmax: int (optional)
        Maximum number of iteration

    Returns
    -------
    t : np.ndarray (dim_a*dim_b, )
        Flattened vector of the (unregularized) optimal transport matrix
    t_list : list
        List of all the optimal transport vectors of the regularization path
    gamma_list : list
        List of the regularization parameters in the path

    Examples
    --------
    >>> import ot
    >>> import numpy as np
    >>> n = 3
    >>> xs = np.array([1., 2., 3.]).reshape((n, 1))
    >>> xt = np.array([5., 6., 7.]).reshape((n, 1))
    >>> C = ot.dist(xs, xt)
    >>> C /= C.max()
    >>> a = np.array([0.2, 0.5, 0.3])
    >>> b = np.array([0.2, 0.5, 0.3])
    >>> t, _, _ = ot.regpath.semi_relaxed_path(a, b, C, 1e-4)
    >>> t
    array([1.99980556e-01, 0.00000000e+00, 0.00000000e+00, 1.94444444e-05,
           4.99980556e-01, 0.00000000e+00, 0.00000000e+00, 1.94444444e-05,
           3.00000000e-01])

    References
    ----------
    .. [41] Chapel, L., Flamary, R., Wu, H., Févotte, C., and Gasso, G. (2021).
        Unbalanced optimal transport through non-negative penalized
        linear regression. NeurIPS.
    """

    n = np.shape(a)[0]
    m = np.shape(b)[0]
    Hr, Hc, c = recast_semi_relaxed_as_lasso(a, b, C)
    Hra = Hr.T.dot(a)
    HrHr = Hr.T.dot(Hr)
    n_iter = 1
    active_index = []

    # initialization
    for j in range(np.shape(C)[1]):
        i = np.argmin(C[:, j])
        active_index.append(i * m + j)
    gamma_list = []
    t_list = []
    current_gamma = np.Inf
    augmented_H0 = construct_augmented_H(active_index, m, Hc, HrHr)
    add_col = np.array([])
    id_pop = -1

    while n_iter < itmax and current_gamma > reg:
        if n_iter == 1:
            H_inv = np.linalg.inv(augmented_H0)
        else:
            H_inv = complement_schur(H_inv, add_col, 1., id_pop + m)
        # compute the intercept and slope of solutions in current iteration
        augmented_phi = H_inv.dot(np.concatenate((b, Hra[active_index])))
        augmented_delta = H_inv[:, m:].dot(c[active_index])
        phi = augmented_phi[m:]
        delta = augmented_delta[m:]
        phi_u = augmented_phi[0:m]
        delta_u = augmented_delta[0:m]
        gamma, ik = semi_relaxed_next_gamma(phi, delta, phi_u, delta_u,
                                            HrHr, Hc, Hra, c, active_index,
                                            current_gamma)

        # compute the next lambda when removing a point from the active set
        alt_gamma, id_pop = compute_next_removal(phi, delta, current_gamma)

        # if the positivity constraint is violated, we remove id_pop
        # from active set, otherwise we add ik to active set
        if alt_gamma > gamma:
            gamma = alt_gamma
        else:
            id_pop = -1

        # compute the solution of current segment
        tA = phi - gamma * delta
        sol = np.zeros((n * m, ))
        sol[active_index] = tA
        if id_pop != -1:
            active_index.pop(id_pop)
            add_col = None
        else:
            active_index.append(ik)
            add_col = np.concatenate((Hc.toarray()[:, ik],
                                      HrHr.toarray()[active_index[:-1], ik]))
            add_col = add_col[:, np.newaxis]

        gamma_list.append(gamma)
        t_list.append(sol)
        current_gamma = gamma
        n_iter += 1

    if itmax <= n_iter:
        print('maximum iteration has been reached !')

    # correct the last solution and gamma
    if len(t_list) > 1:
        t_final = (t_list[-2] + (t_list[-1] - t_list[-2]) *
                   (reg - gamma_list[-2]) / (gamma_list[-1] - gamma_list[-2]))
        t_list[-1] = t_final
        gamma_list[-1] = reg
    else:
        gamma_list[-1] = reg
        print('Regularization path does not exist !')

    return t_list[-1], t_list, gamma_list


def regularization_path(a: np.array, b: np.array, C: np.array, reg=1e-4,
                        semi_relaxed=False, itmax=50000):
    r"""This function provides all the solutions of the regularization path \
    of the l2-UOT problem :ref:`[41] <references-regpath>`.

    The problem to optimize is the Lasso reformulation of the l2-penalized UOT:

    .. math::
        \min_t \gamma \mathbf{c}^T \mathbf{t}
                + 0.5 * \|{H} \mathbf{t} - \mathbf{y}\|_2^2

        s.t.
            \mathbf{t} \geq 0

    where :

    - :math:`\mathbf{c}` is the flattened version of the cost matrix \
      :math:`{C}`
    - :math:`\gamma = 1/\lambda` is the l2-regularization coefficient
    - :math:`\mathbf{y}` is the concatenation of vectors :math:`\mathbf{a}` \
      and :math:`\mathbf{b}`, defined as \
      :math:`\mathbf{y}^T = [\mathbf{a}^T \mathbf{b}^T]`
    - :math:`{H}` is a design matrix, see :ref:`[41] <references-regpath>` \
      for the design of :math:`{H}`. The matrix product :math:`H\mathbf{t}` \
      computes both the source marginal and the target marginals.
    - :math:`\mathbf{t}` is the flattened version of the transport matrix

    For the semi-relaxed problem, it optimizes the Lasso reformulation of the
    l2-penalized UOT:

    .. math::

        \min_t \gamma \mathbf{c}^T \mathbf{t}
                + 0.5 * \|H_r \mathbf{t} - \mathbf{a}\|_2^2

        s.t.
            H_c \mathbf{t} = \mathbf{b}

            \mathbf{t} \geq 0


    Parameters
    ----------
    a : np.ndarray (dim_a,)
        Histogram of dimension dim_a
    b : np.ndarray (dim_b,)
        Histogram of dimension dim_b
    C : np.ndarray, shape (dim_a, dim_b)
        Cost matrix
    reg: float (optional)
        l2-regularization coefficient
    semi_relaxed : bool (optional)
        Give the semi-relaxed path if True
    itmax: int (optional)
        Maximum number of iteration

    Returns
    -------
    t : np.ndarray (dim_a*dim_b, )
        Flattened vector of the (unregularized) optimal transport matrix
    t_list : list
        List of all the optimal transport vectors of the regularization path
    gamma_list : list
        List of the regularization parameters in the path

    References
    ----------
    .. [41] Chapel, L., Flamary, R., Wu, H., Févotte, C., and Gasso, G. (2021).
        Unbalanced optimal transport through non-negative penalized
        linear regression. NeurIPS.
    """
    if semi_relaxed:
        t, t_list, gamma_list = semi_relaxed_path(a, b, C, reg=reg,
                                                  itmax=itmax)
    else:
        t, t_list, gamma_list = fully_relaxed_path(a, b, C, reg=reg,
                                                   itmax=itmax)
    return t, t_list, gamma_list


def compute_transport_plan(gamma, gamma_list, Pi_list):
    r""" Given the regularization path, this function computes the transport
    plan for any value of gamma thanks to the piecewise linearity of the path.

    .. math::
        t(\gamma) = \phi(\gamma) - \gamma \delta(\gamma)

    where:

    - :math:`\gamma` is the regularization parameter
    - :math:`\phi(\gamma)` is the corresponding intercept
    - :math:`\delta(\gamma)` is the corresponding slope
    - :math:`\mathbf{t}` is the flattened version of the transport matrix

    Parameters
    ----------
    gamma : float
        Regularization coefficient
    gamma_list : list
        List of regularization parameters of the regularization path
    Pi_list : list
        List of all the solutions of the regularization path

    Returns
    -------
    t : np.ndarray (dim_a*dim_b, )
        Vectorization of the transport plan corresponding to the given value
        of gamma

    Examples
    --------
    >>> import ot
    >>> import numpy as np
    >>> n = 3
    >>> xs = np.array([1., 2., 3.]).reshape((n, 1))
    >>> xt = np.array([5., 6., 7.]).reshape((n, 1))
    >>> C = ot.dist(xs, xt)
    >>> C /= C.max()
    >>> a = np.array([0.2, 0.5, 0.3])
    >>> b = np.array([0.2, 0.5, 0.3])
    >>> t, pi_list, g_list = ot.regpath.regularization_path(a, b, C, reg=1e-4)
    >>> gamma = 1
    >>> t2 = ot.regpath.compute_transport_plan(gamma, g_list, pi_list)
    >>> t2
    array([0.        , 0.        , 0.        , 0.19722222, 0.05555556,
           0.        , 0.        , 0.24722222, 0.        ])


    .. _references-regpath:
    References
    ----------
    .. [41] Chapel, L., Flamary, R., Wu, H., Févotte, C., and Gasso, G. (2021).
        Unbalanced optimal transport through non-negative penalized
        linear regression. NeurIPS.
    """

    if gamma >= gamma_list[0]:
        Pi = Pi_list[0]
    elif gamma <= gamma_list[-1]:
        Pi = Pi_list[-1]
    else:
        idx = np.where(gamma <= np.array(gamma_list))[0][-1]
        gamma_k0 = gamma_list[idx]
        gamma_k1 = gamma_list[idx + 1]
        pi_k0 = Pi_list[idx]
        pi_k1 = Pi_list[idx + 1]
        Pi = pi_k0 + (pi_k1 - pi_k0) * (gamma - gamma_k0) \
            / (gamma_k1 - gamma_k0)
    return Pi