summaryrefslogtreecommitdiff
path: root/ot/unbalanced.py
blob: 0f0692e699716361d7851f1f76b0491f3d5d3b34 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
# -*- coding: utf-8 -*-
"""
Regularized Unbalanced OT
"""

# Author: Hicham Janati <hicham.janati@inria.fr>
# License: MIT License

from __future__ import division
import warnings
import numpy as np
# from .utils import unif, dist


def sinkhorn_unbalanced(a, b, M, reg, alpha, method='sinkhorn', numItermax=1000,
                        stopThr=1e-9, verbose=False, log=False, **kwargs):
    r"""
    Solve the unbalanced entropic regularization optimal transport problem and return the loss

    The function solves the following optimization problem:

    .. math::
        W = \min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) + \\alpha KL(\gamma 1, a) + \\alpha KL(\gamma^T 1, b)

        s.t.
             \gamma\geq 0
    where :

    - M is the (ns, nt) metric cost matrix
    - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
    - a and b are source and target weights
    - KL is the Kullback-Leibler divergence

    The algorithm used for solving the problem is the generalized Sinkhorn-Knopp matrix scaling algorithm as proposed in [10, 23]_


    Parameters
    ----------
    a : np.ndarray (ns,)
        samples weights in the source domain
    b : np.ndarray (nt,) or np.ndarray (nt,n_hists)
        samples in the target domain, compute sinkhorn with multiple targets
        and fixed M if b is a matrix (return OT loss + dual variables in log)
    M : np.ndarray (ns, nt)
        loss matrix
    reg : float
        Entropy regularization term > 0
    alpha : float
        Marginal relaxation term > 0
    method : str
        method used for the solver either 'sinkhorn',  'sinkhorn_stabilized' or
        'sinkhorn_epsilon_scaling', see those function for specific parameters
    numItermax : int, optional
        Max number of iterations
    stopThr : float, optional
        Stop threshol on error (> 0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        record log if True


    Returns
    -------
    W : (nt) ndarray or float
        Optimal transportation matrix for the given parameters
    log : dict
        log dictionary return only if log==True in parameters

    Examples
    --------

    >>> import ot
    >>> a=[.5, .5]
    >>> b=[.5, .5]
    >>> M=[[0., 1.], [1., 0.]]
    >>> ot.sinkhorn_unbalanced(a, b, M, 1, 1)
    array([[0.51122823, 0.18807035],
           [0.18807035, 0.51122823]])


    References
    ----------

    .. [2] M. Cuturi, Sinkhorn Distances : Lightspeed Computation of Optimal Transport, Advances in Neural Information Processing Systems (NIPS) 26, 2013

    .. [9] Schmitzer, B. (2016). Stabilized Sparse Scaling Algorithms for Entropy Regularized Transport Problems. arXiv preprint arXiv:1610.06519.

    .. [10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). Scaling algorithms for unbalanced transport problems. arXiv preprint arXiv:1607.05816.

    .. [25] Frogner C., Zhang C., Mobahi H., Araya-Polo M., Poggio T. : Learning with a Wasserstein Loss,  Advances in Neural Information Processing Systems (NIPS) 2015


    See Also
    --------
    ot.unbalanced.sinkhorn_knopp_unbalanced : Unbalanced Classic Sinkhorn [10]
    ot.unbalanced.sinkhorn_stabilized_unbalanced: Unbalanced Stabilized sinkhorn [9][10]
    ot.unbalanced.sinkhorn_epsilon_scaling_unbalanced: Unbalanced Sinkhorn with epslilon scaling [9][10]

    """

    if method.lower() == 'sinkhorn':
        def sink():
            return sinkhorn_knopp_unbalanced(a, b, M, reg, alpha,
                                             numItermax=numItermax,
                                             stopThr=stopThr, verbose=verbose,
                                             log=log, **kwargs)

    elif method.lower() in ['sinkhorn_stabilized', 'sinkhorn_epsilon_scaling']:
        warnings.warn('Method not implemented yet. Using classic Sinkhorn Knopp')

        def sink():
            return sinkhorn_knopp_unbalanced(a, b, M, reg, alpha,
                                             numItermax=numItermax,
                                             stopThr=stopThr, verbose=verbose,
                                             log=log, **kwargs)
    else:
        raise ValueError('Unknown method. Using classic Sinkhorn Knopp')

    return sink()


def sinkhorn_unbalanced2(a, b, M, reg, alpha, method='sinkhorn',
                         numItermax=1000, stopThr=1e-9, verbose=False,
                         log=False, **kwargs):
    r"""
    Solve the entropic regularization unbalanced optimal transport problem and return the loss

    The function solves the following optimization problem:

    .. math::
        W = \min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) + \\alpha KL(\gamma 1, a) + \\alpha KL(\gamma^T 1, b)

        s.t.
             \gamma\geq 0
    where :

    - M is the (ns, nt) metric cost matrix
    - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
    - a and b are source and target weights
    - KL is the Kullback-Leibler divergence

    The algorithm used for solving the problem is the generalized Sinkhorn-Knopp matrix scaling algorithm as proposed in [10, 23]_


    Parameters
    ----------
    a : np.ndarray (ns,)
        samples weights in the source domain
    b : np.ndarray (nt,) or np.ndarray (nt, n_hists)
        samples in the target domain, compute sinkhorn with multiple targets
        and fixed M if b is a matrix (return OT loss + dual variables in log)
    M : np.ndarray (ns,nt)
        loss matrix
    reg : float
        Entropy regularization term > 0
    alpha : float
        Marginal relaxation term > 0
    method : str
        method used for the solver either 'sinkhorn',  'sinkhorn_stabilized' or
        'sinkhorn_epsilon_scaling', see those function for specific parameters
    numItermax : int, optional
        Max number of iterations
    stopThr : float, optional
        Stop threshol on error (>0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        record log if True


    Returns
    -------
    W : (nt) ndarray or float
        Optimal transportation matrix for the given parameters
    log : dict
        log dictionary return only if log==True in parameters

    Examples
    --------

    >>> import ot
    >>> a=[.5, .10]
    >>> b=[.5, .5]
    >>> M=[[0., 1.],[1., 0.]]
    >>> ot.unbalanced.sinkhorn_unbalanced2(a, b, M, 1., 1.)
    array([0.31912866])



    References
    ----------

    .. [2] M. Cuturi, Sinkhorn Distances : Lightspeed Computation of Optimal Transport, Advances in Neural Information Processing Systems (NIPS) 26, 2013

    .. [9] Schmitzer, B. (2016). Stabilized Sparse Scaling Algorithms for Entropy Regularized Transport Problems. arXiv preprint arXiv:1610.06519.

    .. [10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). Scaling algorithms for unbalanced transport problems. arXiv preprint arXiv:1607.05816.

    .. [25] Frogner C., Zhang C., Mobahi H., Araya-Polo M., Poggio T. : Learning with a Wasserstein Loss,  Advances in Neural Information Processing Systems (NIPS) 2015

    See Also
    --------
    ot.unbalanced.sinkhorn_knopp : Unbalanced Classic Sinkhorn [10]
    ot.unbalanced.sinkhorn_stabilized: Unbalanced Stabilized sinkhorn [9][10]
    ot.unbalanced.sinkhorn_epsilon_scaling: Unbalanced Sinkhorn with epslilon scaling [9][10]

    """

    if method.lower() == 'sinkhorn':
        def sink():
            return sinkhorn_knopp_unbalanced(a, b, M, reg, alpha,
                                             numItermax=numItermax,
                                             stopThr=stopThr, verbose=verbose,
                                             log=log, **kwargs)

    elif method.lower() in ['sinkhorn_stabilized', 'sinkhorn_epsilon_scaling']:
        warnings.warn('Method not implemented yet. Using classic Sinkhorn Knopp')

        def sink():
            return sinkhorn_knopp_unbalanced(a, b, M, reg, alpha,
                                             numItermax=numItermax,
                                             stopThr=stopThr, verbose=verbose,
                                             log=log, **kwargs)
    else:
        raise ValueError('Unknown method. Using classic Sinkhorn Knopp')

    b = np.asarray(b, dtype=np.float64)
    if len(b.shape) < 2:
        b = b[:, None]

    return sink()


def sinkhorn_knopp_unbalanced(a, b, M, reg, alpha, numItermax=1000,
                              stopThr=1e-9, verbose=False, log=False, **kwargs):
    r"""
    Solve the entropic regularization unbalanced optimal transport problem and return the loss

    The function solves the following optimization problem:

    .. math::
        W = \min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) + \\alpha KL(\gamma 1, a) + \\alpha KL(\gamma^T 1, b)

        s.t.
             \gamma\geq 0
    where :

    - M is the (ns, nt) metric cost matrix
    - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
    - a and b are source and target weights
    - KL is the Kullback-Leibler divergence

    The algorithm used for solving the problem is the generalized Sinkhorn-Knopp matrix scaling algorithm as proposed in [10, 23]_


    Parameters
    ----------
    a : np.ndarray (ns,)
        samples weights in the source domain
    b : np.ndarray (nt,) or np.ndarray (nt, n_hists)
        samples in the target domain, compute sinkhorn with multiple targets
        and fixed M if b is a matrix (return OT loss + dual variables in log)
    M : np.ndarray (ns,nt)
        loss matrix
    reg : float
        Entropy regularization term > 0
    alpha : float
        Marginal relaxation term > 0
    numItermax : int, optional
        Max number of iterations
    stopThr : float, optional
        Stop threshol on error (>0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        record log if True


    Returns
    -------
    gamma : (ns x nt) ndarray
        Optimal transportation matrix for the given parameters
    log : dict
        log dictionary return only if log==True in parameters

    Examples
    --------

    >>> import ot
    >>> a=[.5, .5]
    >>> b=[.5, .5]
    >>> M=[[0., 1.],[1., 0.]]
    >>> ot.unbalanced.sinkhorn_knopp_unbalanced(a, b, M, 1., 1.)
    array([[0.51122823, 0.18807035],
           [0.18807035, 0.51122823]])

    References
    ----------

    .. [10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). Scaling algorithms for unbalanced transport problems. arXiv preprint arXiv:1607.05816.

    .. [25] Frogner C., Zhang C., Mobahi H., Araya-Polo M., Poggio T. : Learning with a Wasserstein Loss,  Advances in Neural Information Processing Systems (NIPS) 2015

    See Also
    --------
    ot.lp.emd : Unregularized OT
    ot.optim.cg : General regularized OT

    """

    a = np.asarray(a, dtype=np.float64)
    b = np.asarray(b, dtype=np.float64)
    M = np.asarray(M, dtype=np.float64)

    n_a, n_b = M.shape

    if len(a) == 0:
        a = np.ones(n_a, dtype=np.float64) / n_a
    if len(b) == 0:
        b = np.ones(n_b, dtype=np.float64) / n_b

    if len(b.shape) > 1:
        n_hists = b.shape[1]
    else:
        n_hists = 0

    if log:
        log = {'err': []}

    # we assume that no distances are null except those of the diagonal of
    # distances
    if n_hists:
        u = np.ones((n_a, 1)) / n_a
        v = np.ones((n_b, n_hists)) / n_b
        a = a.reshape(n_a, 1)
    else:
        u = np.ones(n_a) / n_a
        v = np.ones(n_b) / n_b

    # print(reg)
    # Next 3 lines equivalent to K= np.exp(-M/reg), but faster to compute
    K = np.empty(M.shape, dtype=M.dtype)
    np.divide(M, -reg, out=K)
    np.exp(K, out=K)

    # print(np.min(K))
    fi = alpha / (alpha + reg)

    cpt = 0
    err = 1.

    while (err > stopThr and cpt < numItermax):
        uprev = u
        vprev = v

        Kv = K.dot(v)
        u = (a / Kv) ** fi
        Ktu = K.T.dot(u)
        v = (b / Ktu) ** fi

        if (np.any(Ktu == 0.)
                or np.any(np.isnan(u)) or np.any(np.isnan(v))
                or np.any(np.isinf(u)) or np.any(np.isinf(v))):
            # we have reached the machine precision
            # come back to previous solution and quit loop
            warnings.warn('Numerical errors at iteration %s' % cpt)
            u = uprev
            v = vprev
            break
        if cpt % 10 == 0:
            # we can speed up the process by checking for the error only all
            # the 10th iterations
            err = np.sum((u - uprev)**2) / np.sum((u)**2) + \
                np.sum((v - vprev)**2) / np.sum((v)**2)
            if log:
                log['err'].append(err)
            if verbose:
                if cpt % 200 == 0:
                    print(
                        '{:5s}|{:12s}'.format('It.', 'Err') + '\n' + '-' * 19)
                print('{:5d}|{:8e}|'.format(cpt, err))
        cpt += 1

    if log:
        log['u'] = u
        log['v'] = v

    if n_hists:  # return only loss
        res = np.einsum('ik,ij,jk,ij->k', u, K, v, M)
        if log:
            return res, log
        else:
            return res

    else:  # return OT matrix

        if log:
            return u[:, None] * K * v[None, :], log
        else:
            return u[:, None] * K * v[None, :]


def barycenter_unbalanced(A, M, reg, alpha, weights=None, numItermax=1000,
                          stopThr=1e-4, verbose=False, log=False):
    r"""Compute the entropic regularized unbalanced wasserstein barycenter of distributions A

     The function solves the following optimization problem:

    .. math::
       \mathbf{a} = arg\min_\mathbf{a} \sum_i Wu_{reg}(\mathbf{a},\mathbf{a}_i)

    where :

    - :math:`Wu_{reg}(\cdot,\cdot)` is the unbalanced entropic regularized Wasserstein distance (see ot.unbalanced.sinkhorn_unbalanced)
    - :math:`\mathbf{a}_i` are training distributions in the columns of matrix :math:`\mathbf{A}`
    - reg and :math:`\mathbf{M}` are respectively the regularization term and the cost matrix for OT
    - alpha is the marginal relaxation hyperparameter
    The algorithm used for solving the problem is the generalized Sinkhorn-Knopp matrix scaling algorithm as proposed in [10]_

    Parameters
    ----------
    A : np.ndarray (d,n)
        n training distributions a_i of size d
    M : np.ndarray (d,d)
        loss matrix   for OT
    reg : float
        Entropy regularization term > 0
    alpha : float
        Marginal relaxation term > 0
    weights : np.ndarray (n,)
        Weights of each histogram a_i on the simplex (barycentric coodinates)
    numItermax : int, optional
        Max number of iterations
    stopThr : float, optional
        Stop threshol on error (>0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        record log if True


    Returns
    -------
    a : (d,) ndarray
        Unbalanced Wasserstein barycenter
    log : dict
        log dictionary return only if log==True in parameters


    References
    ----------

    .. [3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G. (2015). Iterative Bregman projections for regularized transportation problems. SIAM Journal on Scientific Computing, 37(2), A1111-A1138.
    .. [10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). Scaling algorithms for unbalanced transport problems. arXiv preprint arXiv:1607.05816.


    """
    p, n_hists = A.shape
    if weights is None:
        weights = np.ones(n_hists) / n_hists
    else:
        assert(len(weights) == A.shape[1])

    if log:
        log = {'err': []}

    K = np.exp(- M / reg)

    fi = alpha / (alpha + reg)

    v = np.ones((p, n_hists)) / p
    u = np.ones((p, 1)) / p

    cpt = 0
    err = 1.

    while (err > stopThr and cpt < numItermax):
        uprev = u
        vprev = v

        Kv = K.dot(v)
        u = (A / Kv) ** fi
        Ktu = K.T.dot(u)
        q = ((Ktu ** (1 - fi)).dot(weights))
        q = q ** (1 / (1 - fi))
        Q = q[:, None]
        v = (Q / Ktu) ** fi

        if (np.any(Ktu == 0.)
                or np.any(np.isnan(u)) or np.any(np.isnan(v))
                or np.any(np.isinf(u)) or np.any(np.isinf(v))):
            # we have reached the machine precision
            # come back to previous solution and quit loop
            warnings.warn('Numerical errors at iteration %s' % cpt)
            u = uprev
            v = vprev
            break
        if cpt % 10 == 0:
            # we can speed up the process by checking for the error only all
            # the 10th iterations
            err = np.sum((u - uprev) ** 2) / np.sum((u) ** 2) + \
                np.sum((v - vprev) ** 2) / np.sum((v) ** 2)
            if log:
                log['err'].append(err)
            if verbose:
                if cpt % 50 == 0:
                    print(
                        '{:5s}|{:12s}'.format('It.', 'Err') + '\n' + '-' * 19)
                print('{:5d}|{:8e}|'.format(cpt, err))

    cpt += 1
    if log:
        log['niter'] = cpt
        log['u'] = u
        log['v'] = v
        return q, log
    else:
        return q