summaryrefslogtreecommitdiff
path: root/ot/unbalanced.py
blob: 8bd02eb94d58dabf25a556bed28bffaf7f4b16ab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
# -*- coding: utf-8 -*-
"""
Regularized Unbalanced OT
"""

# Author: Hicham Janati <hicham.janati@inria.fr>
# License: MIT License

import numpy as np
# from .utils import unif, dist


def sinkhorn_unbalanced(a, b, M, reg, alpha, method='sinkhorn', numItermax=1000,
                        stopThr=1e-9, verbose=False, log=False, **kwargs):
    u"""
    Solve the unbalanced entropic regularization optimal transport problem and return the loss

    The function solves the following optimization problem:

    .. math::
        W = \min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) + alpha KL(\gamma 1, a) + alpha KL(\gamma^T 1, b)

        s.t.
             \gamma\geq 0
    where :

    - M is the (ns, nt) metric cost matrix
    - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
    - a and b are source and target weights
    - KL is the Kullback-Leibler divergence

    The algorithm used for solving the problem is the generalized Sinkhorn-Knopp matrix scaling algorithm as proposed in [10]_


    Parameters
    ----------
    a : np.ndarray (ns,)
        samples weights in the source domain
    b : np.ndarray (nt,) or np.ndarray (nt,n_hists)
        samples in the target domain, compute sinkhorn with multiple targets
        and fixed M if b is a matrix (return OT loss + dual variables in log)
    M : np.ndarray (ns, nt)
        loss matrix
    reg : float
        Regularization term > 0
    alpha : float
        Regulatization term > 0
    method : str
        method used for the solver either 'sinkhorn',  'sinkhorn_stabilized' or
        'sinkhorn_epsilon_scaling', see those function for specific parameters
    numItermax : int, optional
        Max number of iterations
    stopThr : float, optional
        Stop threshol on error (> 0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        record log if True


    Returns
    -------
    W : (nt) ndarray or float
        Optimal transportation matrix for the given parameters
    log : dict
        log dictionary return only if log==True in parameters

    Examples
    --------

    >>> import ot
    >>> a=[.5, .5]
    >>> b=[.5, .5]
    >>> M=[[0., 1.], [1., 0.]]
    >>> ot.sinkhorn2(a, b, M, 1, 1)
    array([0.26894142])


    References
    ----------

    .. [2] M. Cuturi, Sinkhorn Distances : Lightspeed Computation of Optimal Transport, Advances in Neural Information Processing Systems (NIPS) 26, 2013

    .. [9] Schmitzer, B. (2016). Stabilized Sparse Scaling Algorithms for Entropy Regularized Transport Problems. arXiv preprint arXiv:1610.06519.

    .. [10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). Scaling algorithms for unbalanced transport problems. arXiv preprint arXiv:1607.05816.



    See Also
    --------
    ot.lp.emd : Unregularized OT
    ot.optim.cg : General regularized OT
    ot.bregman.sinkhorn_knopp : Classic Sinkhorn [2]
    ot.bregman.sinkhorn_stabilized: Stabilized sinkhorn [9][10]
    ot.bregman.sinkhorn_epsilon_scaling: Sinkhorn with epslilon scaling [9][10]

    """

    if method.lower() == 'sinkhorn':
        def sink():
            return sinkhorn_knopp(a, b, M, reg, alpha, numItermax=numItermax,
                                  stopThr=stopThr, verbose=verbose, log=log, **kwargs)
    # elif method.lower() == 'sinkhorn_stabilized':
    #     def sink():
    #         return sinkhorn_stabilized(a, b, M, reg, numItermax=numItermax,
    #                                    stopThr=stopThr, verbose=verbose, log=log, **kwargs)
    # elif method.lower() == 'sinkhorn_epsilon_scaling':
    #     def sink():
    #         return sinkhorn_epsilon_scaling(
    #             a, b, M, reg, numItermax=numItermax,
    #             stopThr=stopThr, verbose=verbose, log=log, **kwargs)
    else:
        print('Warning : unknown method. Falling back to classic Sinkhorn Knopp')

        def sink():
            return sinkhorn_knopp(a, b, M, reg, alpha, numItermax=numItermax,
                                  stopThr=stopThr, verbose=verbose, log=log, **kwargs)

    return sink()


def sinkhorn2(a, b, M, reg, alpha, method='sinkhorn', numItermax=1000,
              stopThr=1e-9, verbose=False, log=False, **kwargs):
    u"""
    Solve the entropic regularization unbalanced optimal transport problem and return the loss

    The function solves the following optimization problem:

    .. math::
        W = \min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) + alpha KL(\gamma 1, a) + alpha KL(\gamma^T 1, b)

        s.t.
             \gamma\geq 0
    where :

    - M is the (ns, nt) metric cost matrix
    - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
    - a and b are source and target weights
    - KL is the Kullback-Leibler divergence

    The algorithm used for solving the problem is the generalized Sinkhorn-Knopp matrix scaling algorithm as proposed in [10]_


    Parameters
    ----------
    a : np.ndarray (ns,)
        samples weights in the source domain
    b : np.ndarray (nt,) or np.ndarray (nt, n_hists)
        samples in the target domain, compute sinkhorn with multiple targets
        and fixed M if b is a matrix (return OT loss + dual variables in log)
    M : np.ndarray (ns,nt)
        loss matrix
    reg : float
        Regularization term > 0
    alpha: float
        Regularization term > 0
    method : str
        method used for the solver either 'sinkhorn',  'sinkhorn_stabilized' or
        'sinkhorn_epsilon_scaling', see those function for specific parameters
    numItermax : int, optional
        Max number of iterations
    stopThr : float, optional
        Stop threshol on error (>0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        record log if True


    Returns
    -------
    W : (nt) ndarray or float
        Optimal transportation matrix for the given parameters
    log : dict
        log dictionary return only if log==True in parameters

    Examples
    --------

    >>> import ot
    >>> a=[.5, .10]
    >>> b=[.5, .5]
    >>> M=[[0., 1.],[1., 0.]]
    >>> ot.sinkhorn2(a, b, M, 1., 1.)
    array([ 0.26894142])



    References
    ----------

    .. [2] M. Cuturi, Sinkhorn Distances : Lightspeed Computation of Optimal Transport, Advances in Neural Information Processing Systems (NIPS) 26, 2013

    .. [9] Schmitzer, B. (2016). Stabilized Sparse Scaling Algorithms for Entropy Regularized Transport Problems. arXiv preprint arXiv:1610.06519.

    .. [10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). Scaling algorithms for unbalanced transport problems. arXiv preprint arXiv:1607.05816.

       [21] Altschuler J., Weed J., Rigollet P. : Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration, Advances in Neural Information Processing Systems (NIPS) 31, 2017



    See Also
    --------
    ot.lp.emd : Unregularized OT
    ot.optim.cg : General regularized OT
    ot.bregman.sinkhorn_knopp : Classic Sinkhorn [2]
    ot.bregman.greenkhorn : Greenkhorn [21]
    ot.bregman.sinkhorn_stabilized: Stabilized sinkhorn [9][10]
    ot.bregman.sinkhorn_epsilon_scaling: Sinkhorn with epslilon scaling [9][10]

    """

    if method.lower() == 'sinkhorn':
        def sink():
            return sinkhorn_knopp(a, b, M, reg, alpha, numItermax=numItermax,
                                  stopThr=stopThr, verbose=verbose, log=log, **kwargs)
    # elif method.lower() == 'sinkhorn_stabilized':
    #     def sink():
    #         return sinkhorn_stabilized(a, b, M, reg, numItermax=numItermax,
    #                                    stopThr=stopThr, verbose=verbose, log=log, **kwargs)
    # elif method.lower() == 'sinkhorn_epsilon_scaling':
    #     def sink():
    #         return sinkhorn_epsilon_scaling(
    #             a, b, M, reg, numItermax=numItermax,
    #             stopThr=stopThr, verbose=verbose, log=log, **kwargs)
    else:
        print('Warning : unknown method using classic Sinkhorn Knopp')

        def sink():
            return sinkhorn_knopp(a, b, M, reg, alpha, **kwargs)

    b = np.asarray(b, dtype=np.float64)
    if len(b.shape) < 2:
        b = b[None, :]

    return sink()


def sinkhorn_knopp(a, b, M, reg, alpha, numItermax=1000,
                   stopThr=1e-9, verbose=False, log=False, **kwargs):
    """
    Solve the entropic regularization unbalanced optimal transport problem and return the loss

    The function solves the following optimization problem:

    .. math::
        W = \min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) + alpha KL(\gamma 1, a) + alpha KL(\gamma^T 1, b)

        s.t.
             \gamma\geq 0
    where :

    - M is the (ns, nt) metric cost matrix
    - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
    - a and b are source and target weights
    - KL is the Kullback-Leibler divergence

    The algorithm used for solving the problem is the generalized Sinkhorn-Knopp matrix scaling algorithm as proposed in [10]_


    Parameters
    ----------
    a : np.ndarray (ns,)
        samples weights in the source domain
    b : np.ndarray (nt,) or np.ndarray (nt, n_hists)
        samples in the target domain, compute sinkhorn with multiple targets
        and fixed M if b is a matrix (return OT loss + dual variables in log)
    M : np.ndarray (ns,nt)
        loss matrix
    reg : float
        Regularization term > 0
    alpha: float
        Regularization term > 0
    numItermax : int, optional
        Max number of iterations
    stopThr : float, optional
        Stop threshol on error (>0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        record log if True


    Returns
    -------
    gamma : (ns x nt) ndarray
        Optimal transportation matrix for the given parameters
    log : dict
        log dictionary return only if log==True in parameters

    Examples
    --------

    >>> import ot
    >>> a=[.5, .15]
    >>> b=[.5, .5]
    >>> M=[[0., 1.],[1., 0.]]
    >>> ot.sinkhorn(a, b, M, 1., 1.)
    array([[ 0.36552929,  0.13447071],
           [ 0.13447071,  0.36552929]])


    References
    ----------

    .. [10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). Scaling algorithms for unbalanced transport problems. arXiv preprint arXiv:1607.05816.


    See Also
    --------
    ot.lp.emd : Unregularized OT
    ot.optim.cg : General regularized OT

    """

    a = np.asarray(a, dtype=np.float64)
    b = np.asarray(b, dtype=np.float64)
    M = np.asarray(M, dtype=np.float64)

    n_a, n_b = M.shape

    if len(a) == 0:
        a = np.ones(n_a, dtype=np.float64) / n_a
    if len(b) == 0:
        b = np.ones(n_b, dtype=np.float64) / n_b

    assert n_a == len(a) and n_b == len(b)
    if b.ndim > 1:
        n_hists = b.shape[1]
    else:
        n_hists = 0

    if log:
        log = {'err': []}

    # we assume that no distances are null except those of the diagonal of
    # distances
    if n_hists:
        u = np.ones((n_a, n_hists)) / n_a
        v = np.ones((n_b, n_hists)) / n_b
    else:
        u = np.ones(n_a) / n_a
        v = np.ones(n_b) / n_b

    # print(reg)
    # Next 3 lines equivalent to K= np.exp(-M/reg), but faster to compute
    K = np.empty(M.shape, dtype=M.dtype)
    np.divide(M, -reg, out=K)
    np.exp(K, out=K)

    # print(np.min(K))
    fi = alpha / (alpha + reg)

    cpt = 0
    err = 1.
    while (err > stopThr and cpt < numItermax):
        uprev = u
        vprev = v

        Kv = K.dot(v)
        u = (a / Kv) ** fi
        Ktu = K.T.dot(u)
        v = (b / Ktu) ** fi

        if (np.any(Ktu == 0.)
                or np.any(np.isnan(u)) or np.any(np.isnan(v))
                or np.any(np.isinf(u)) or np.any(np.isinf(v))):
            # we have reached the machine precision
            # come back to previous solution and quit loop
            print('Warning: numerical errors at iteration', cpt)
            u = uprev
            v = vprev
            break
        if cpt % 10 == 0:
            # we can speed up the process by checking for the error only all
            # the 10th iterations
            err = np.sum((u - uprev)**2) / np.sum((u)**2) + \
                np.sum((v - vprev)**2) / np.sum((v)**2)
            if log:
                log['err'].append(err)
            if verbose:
                if cpt % 200 == 0:
                    print(
                        '{:5s}|{:12s}'.format('It.', 'Err') + '\n' + '-' * 19)
                print('{:5d}|{:8e}|'.format(cpt, err))
        cpt = cpt + 1
    if log:
        log['u'] = u
        log['v'] = v

    if n_hists:  # return only loss
        res = np.einsum('ik,ij,jk,ij->k', u, K, v, M)
        if log:
            return res, log
        else:
            return res

    else:  # return OT matrix

        if log:
            return u[:, None] * K * v[None, :], log
        else:
            return u[:, None] * K * v[None, :]