summaryrefslogtreecommitdiff
path: root/ot/unbalanced.py
blob: d516dfc68fecae9d2ae7348f26acf383d0e19285 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
# -*- coding: utf-8 -*-
"""
Regularized Unbalanced OT
"""

# Author: Hicham Janati <hicham.janati@inria.fr>
# License: MIT License

from __future__ import division
import warnings
import numpy as np
from scipy.special import logsumexp

# from .utils import unif, dist


def sinkhorn_unbalanced(a, b, M, reg, reg_m, method='sinkhorn', numItermax=1000,
                        stopThr=1e-6, verbose=False, log=False, **kwargs):
    r"""
    Solve the unbalanced entropic regularization optimal transport problem
    and return the OT plan

    The function solves the following optimization problem:

    .. math::
        W = \min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) + reg_m KL(\gamma 1, a) + reg_m KL(\gamma^T 1, b)

        s.t.
             \gamma\geq 0
    where :

    - M is the (dim_a, dim_b) metric cost matrix
    - :math:`\Omega` is the entropic regularization
        term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
    - a and b are source and target unbalanced distributions
    - KL is the Kullback-Leibler divergence

    The algorithm used for solving the problem is the generalized
        Sinkhorn-Knopp matrix scaling algorithm as proposed in [10, 23]_


    Parameters
    ----------
    a : np.ndarray (dim_a,)
        Unnormalized histogram of dimension dim_a
    b : np.ndarray (dim_b,) or np.ndarray (dim_b, n_hists)
        One or multiple unnormalized histograms of dimension dim_b
        If many, compute all the OT distances (a, b_i)
    M : np.ndarray (dim_a, dim_b)
        loss matrix
    reg : float
        Entropy regularization term > 0
    reg_m: float
        Marginal relaxation term > 0
    method : str
        method used for the solver either 'sinkhorn',  'sinkhorn_stabilized' or
        'sinkhorn_reg_scaling', see those function for specific parameters
    numItermax : int, optional
        Max number of iterations
    stopThr : float, optional
        Stop threshol on error (>0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        record log if True


    Returns
    -------
    if n_hists == 1:
        gamma : (dim_a x dim_b) ndarray
            Optimal transportation matrix for the given parameters
        log : dict
            log dictionary returned only if `log` is `True`
    else:
        ot_distance : (n_hists,) ndarray
            the OT distance between `a` and each of the histograms `b_i`
        log : dict
            log dictionary returned only if `log` is `True`

    Examples
    --------

    >>> import ot
    >>> a=[.5, .5]
    >>> b=[.5, .5]
    >>> M=[[0., 1.], [1., 0.]]
    >>> ot.sinkhorn_unbalanced(a, b, M, 1, 1)
    array([[0.51122823, 0.18807035],
           [0.18807035, 0.51122823]])


    References
    ----------

    .. [2] M. Cuturi, Sinkhorn Distances : Lightspeed Computation of Optimal
        Transport, Advances in Neural Information Processing Systems
        (NIPS) 26, 2013

    .. [9] Schmitzer, B. (2016). Stabilized Sparse Scaling Algorithms for
        Entropy Regularized Transport Problems. arXiv preprint arXiv:1610.06519.

    .. [10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016).
        Scaling algorithms for unbalanced transport problems. arXiv preprint
        arXiv:1607.05816.

    .. [25] Frogner C., Zhang C., Mobahi H., Araya-Polo M., Poggio T. :
        Learning with a Wasserstein Loss,  Advances in Neural Information
        Processing Systems (NIPS) 2015


    See Also
    --------
    ot.unbalanced.sinkhorn_knopp_unbalanced : Unbalanced Classic Sinkhorn [10]
    ot.unbalanced.sinkhorn_stabilized_unbalanced:
        Unbalanced Stabilized sinkhorn [9][10]
    ot.unbalanced.sinkhorn_reg_scaling_unbalanced:
        Unbalanced Sinkhorn with epslilon scaling [9][10]

    """

    if method.lower() == 'sinkhorn':
        return sinkhorn_knopp_unbalanced(a, b, M, reg, reg_m,
                                         numItermax=numItermax,
                                         stopThr=stopThr, verbose=verbose,
                                         log=log, **kwargs)

    elif method.lower() == 'sinkhorn_stabilized':
        return sinkhorn_stabilized_unbalanced(a, b, M, reg, reg_m,
                                              numItermax=numItermax,
                                              stopThr=stopThr,
                                              verbose=verbose,
                                              log=log, **kwargs)
    elif method.lower() in ['sinkhorn_reg_scaling']:
        warnings.warn('Method not implemented yet. Using classic Sinkhorn Knopp')
        return sinkhorn_knopp_unbalanced(a, b, M, reg, reg_m,
                                         numItermax=numItermax,
                                         stopThr=stopThr, verbose=verbose,
                                         log=log, **kwargs)
    else:
        raise ValueError("Unknown method '%s'." % method)


def sinkhorn_unbalanced2(a, b, M, reg, reg_m, method='sinkhorn',
                         numItermax=1000, stopThr=1e-6, verbose=False,
                         log=False, **kwargs):
    r"""
    Solve the entropic regularization unbalanced optimal transport problem and
    return the loss

    The function solves the following optimization problem:

    .. math::
        W = \min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) + reg_m KL(\gamma 1, a) + reg_m KL(\gamma^T 1, b)

        s.t.
             \gamma\geq 0
    where :

    - M is the (dim_a, dim_b) metric cost matrix
    - :math:`\Omega` is the entropic regularization term
        :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
    - a and b are source and target unbalanced distributions
    - KL is the Kullback-Leibler divergence

    The algorithm used for solving the problem is the generalized
    Sinkhorn-Knopp matrix scaling algorithm as proposed in [10, 23]_


    Parameters
    ----------
    a : np.ndarray (dim_a,)
        Unnormalized histogram of dimension dim_a
    b : np.ndarray (dim_b,) or np.ndarray (dim_b, n_hists)
        One or multiple unnormalized histograms of dimension dim_b
        If many, compute all the OT distances (a, b_i)
    M : np.ndarray (dim_a, dim_b)
        loss matrix
    reg : float
        Entropy regularization term > 0
    reg_m: float
        Marginal relaxation term > 0
    method : str
        method used for the solver either 'sinkhorn',  'sinkhorn_stabilized' or
        'sinkhorn_reg_scaling', see those function for specific parameters
    numItermax : int, optional
        Max number of iterations
    stopThr : float, optional
        Stop threshol on error (>0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        record log if True


    Returns
    -------
    ot_distance : (n_hists,) ndarray
        the OT distance between `a` and each of the histograms `b_i`
    log : dict
        log dictionary returned only if `log` is `True`

    Examples
    --------

    >>> import ot
    >>> a=[.5, .10]
    >>> b=[.5, .5]
    >>> M=[[0., 1.],[1., 0.]]
    >>> ot.unbalanced.sinkhorn_unbalanced2(a, b, M, 1., 1.)
    array([0.31912866])



    References
    ----------

    .. [2] M. Cuturi, Sinkhorn Distances : Lightspeed Computation of Optimal
        Transport, Advances in Neural Information Processing Systems
        (NIPS) 26, 2013

    .. [9] Schmitzer, B. (2016). Stabilized Sparse Scaling Algorithms for
        Entropy Regularized Transport Problems. arXiv preprint arXiv:1610.06519.

    .. [10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016).
        Scaling algorithms for unbalanced transport problems. arXiv preprint
        arXiv:1607.05816.

    .. [25] Frogner C., Zhang C., Mobahi H., Araya-Polo M., Poggio T. :
        Learning with a Wasserstein Loss,  Advances in Neural Information
        Processing Systems (NIPS) 2015

    See Also
    --------
    ot.unbalanced.sinkhorn_knopp : Unbalanced Classic Sinkhorn [10]
    ot.unbalanced.sinkhorn_stabilized: Unbalanced Stabilized sinkhorn [9][10]
    ot.unbalanced.sinkhorn_reg_scaling: Unbalanced Sinkhorn with epslilon scaling [9][10]

    """
    b = np.asarray(b, dtype=np.float64)
    if len(b.shape) < 2:
        b = b[:, None]
    if method.lower() == 'sinkhorn':
        return sinkhorn_knopp_unbalanced(a, b, M, reg, reg_m,
                                         numItermax=numItermax,
                                         stopThr=stopThr, verbose=verbose,
                                         log=log, **kwargs)

    elif method.lower() == 'sinkhorn_stabilized':
        return sinkhorn_stabilized_unbalanced(a, b, M, reg, reg_m,
                                              numItermax=numItermax,
                                              stopThr=stopThr,
                                              verbose=verbose,
                                              log=log, **kwargs)
    elif method.lower() in ['sinkhorn_reg_scaling']:
        warnings.warn('Method not implemented yet. Using classic Sinkhorn Knopp')
        return sinkhorn_knopp_unbalanced(a, b, M, reg, reg_m,
                                         numItermax=numItermax,
                                         stopThr=stopThr, verbose=verbose,
                                         log=log, **kwargs)
    else:
        raise ValueError('Unknown method %s.' % method)


def sinkhorn_knopp_unbalanced(a, b, M, reg, reg_m, numItermax=1000,
                              stopThr=1e-6, verbose=False, log=False, **kwargs):
    r"""
    Solve the entropic regularization unbalanced optimal transport problem and return the loss

    The function solves the following optimization problem:

    .. math::
        W = \min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) + \reg_m KL(\gamma 1, a) + \reg_m KL(\gamma^T 1, b)

        s.t.
             \gamma\geq 0
    where :

    - M is the (dim_a, dim_b) metric cost matrix
    - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
    - a and b are source and target unbalanced distributions
    - KL is the Kullback-Leibler divergence

    The algorithm used for solving the problem is the generalized Sinkhorn-Knopp matrix scaling algorithm as proposed in [10, 23]_


    Parameters
    ----------
    a : np.ndarray (dim_a,)
        Unnormalized histogram of dimension dim_a
    b : np.ndarray (dim_b,) or np.ndarray (dim_b, n_hists)
        One or multiple unnormalized histograms of dimension dim_b
        If many, compute all the OT distances (a, b_i)
    M : np.ndarray (dim_a, dim_b)
        loss matrix
    reg : float
        Entropy regularization term > 0
    reg_m: float
        Marginal relaxation term > 0
    numItermax : int, optional
        Max number of iterations
    stopThr : float, optional
        Stop threshol on error (> 0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        record log if True


    Returns
    -------
    if n_hists == 1:
        gamma : (dim_a x dim_b) ndarray
            Optimal transportation matrix for the given parameters
        log : dict
            log dictionary returned only if `log` is `True`
    else:
        ot_distance : (n_hists,) ndarray
            the OT distance between `a` and each of the histograms `b_i`
        log : dict
            log dictionary returned only if `log` is `True`
    Examples
    --------

    >>> import ot
    >>> a=[.5, .5]
    >>> b=[.5, .5]
    >>> M=[[0., 1.],[1., 0.]]
    >>> ot.unbalanced.sinkhorn_knopp_unbalanced(a, b, M, 1., 1.)
    array([[0.51122823, 0.18807035],
           [0.18807035, 0.51122823]])

    References
    ----------

    .. [10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016).
        Scaling algorithms for unbalanced transport problems. arXiv preprint
        arXiv:1607.05816.

    .. [25] Frogner C., Zhang C., Mobahi H., Araya-Polo M., Poggio T. :
        Learning with a Wasserstein Loss,  Advances in Neural Information
        Processing Systems (NIPS) 2015

    See Also
    --------
    ot.lp.emd : Unregularized OT
    ot.optim.cg : General regularized OT

    """

    a = np.asarray(a, dtype=np.float64)
    b = np.asarray(b, dtype=np.float64)
    M = np.asarray(M, dtype=np.float64)

    dim_a, dim_b = M.shape

    if len(a) == 0:
        a = np.ones(dim_a, dtype=np.float64) / dim_a
    if len(b) == 0:
        b = np.ones(dim_b, dtype=np.float64) / dim_b

    if len(b.shape) > 1:
        n_hists = b.shape[1]
    else:
        n_hists = 0

    if log:
        log = {'err': []}

    # we assume that no distances are null except those of the diagonal of
    # distances
    if n_hists:
        u = np.ones((dim_a, 1)) / dim_a
        v = np.ones((dim_b, n_hists)) / dim_b
        a = a.reshape(dim_a, 1)
    else:
        u = np.ones(dim_a) / dim_a
        v = np.ones(dim_b) / dim_b

    # Next 3 lines equivalent to K= np.exp(-M/reg), but faster to compute
    K = np.empty(M.shape, dtype=M.dtype)
    np.divide(M, -reg, out=K)
    np.exp(K, out=K)

    fi = reg_m / (reg_m + reg)

    cpt = 0
    err = 1.

    while (err > stopThr and cpt < numItermax):
        uprev = u
        vprev = v

        Kv = K.dot(v)
        u = (a / Kv) ** fi
        Ktu = K.T.dot(u)
        v = (b / Ktu) ** fi

        if (np.any(Ktu == 0.)
                or np.any(np.isnan(u)) or np.any(np.isnan(v))
                or np.any(np.isinf(u)) or np.any(np.isinf(v))):
            # we have reached the machine precision
            # come back to previous solution and quit loop
            warnings.warn('Numerical errors at iteration %s' % cpt)
            u = uprev
            v = vprev
            break
        if cpt % 10 == 0:
            # we can speed up the process by checking for the error only all
            # the 10th iterations
            err_u = abs(u - uprev).max() / max(abs(u).max(), abs(uprev).max(), 1.)
            err_v = abs(v - vprev).max() / max(abs(v).max(), abs(vprev).max(), 1.)
            err = 0.5 * (err_u + err_v)
            if log:
                log['err'].append(err)
            if verbose:
                if cpt % 200 == 0:
                    print(
                        '{:5s}|{:12s}'.format('It.', 'Err') + '\n' + '-' * 19)
                print('{:5d}|{:8e}|'.format(cpt, err))
        cpt += 1

    if log:
        log['logu'] = np.log(u + 1e-16)
        log['logv'] = np.log(v + 1e-16)

    if n_hists:  # return only loss
        res = np.einsum('ik,ij,jk,ij->k', u, K, v, M)
        if log:
            return res, log
        else:
            return res

    else:  # return OT matrix

        if log:
            return u[:, None] * K * v[None, :], log
        else:
            return u[:, None] * K * v[None, :]


def sinkhorn_stabilized_unbalanced(a, b, M, reg, reg_m, tau=1e5, numItermax=1000,
                                   stopThr=1e-6, verbose=False, log=False,
                                   **kwargs):
    r"""
    Solve the entropic regularization unbalanced optimal transport
    problem and return the loss

    The function solves the following optimization problem using log-domain
    stabilization as proposed in [10]:

    .. math::
        W = \min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) + reg_m KL(\gamma 1, a) + reg_m KL(\gamma^T 1, b)

        s.t.
             \gamma\geq 0
    where :

    - M is the (dim_a, dim_b) metric cost matrix
    - :math:`\Omega` is the entropic regularization
        term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
    - a and b are source and target unbalanced distributions
    - KL is the Kullback-Leibler divergence

    The algorithm used for solving the problem is the generalized
    Sinkhorn-Knopp matrix scaling algorithm as proposed in [10, 23]_


    Parameters
    ----------
    a : np.ndarray (dim_a,)
        Unnormalized histogram of dimension dim_a
    b : np.ndarray (dim_b,) or np.ndarray (dim_b, n_hists)
        One or multiple unnormalized histograms of dimension dim_b
        If many, compute all the OT distances (a, b_i)
    M : np.ndarray (dim_a, dim_b)
        loss matrix
    reg : float
        Entropy regularization term > 0
    reg_m: float
        Marginal relaxation term > 0
    tau : float
        thershold for max value in u or v for log scaling
    numItermax : int, optional
        Max number of iterations
    stopThr : float, optional
        Stop threshol on error (>0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        record log if True


    Returns
    -------
    if n_hists == 1:
        gamma : (dim_a x dim_b) ndarray
            Optimal transportation matrix for the given parameters
        log : dict
            log dictionary returned only if `log` is `True`
    else:
        ot_distance : (n_hists,) ndarray
            the OT distance between `a` and each of the histograms `b_i`
        log : dict
            log dictionary returned only if `log` is `True`
    Examples
    --------

    >>> import ot
    >>> a=[.5, .5]
    >>> b=[.5, .5]
    >>> M=[[0., 1.],[1., 0.]]
    >>> ot.unbalanced.sinkhorn_stabilized_unbalanced(a, b, M, 1., 1.)
    array([[0.51122823, 0.18807035],
           [0.18807035, 0.51122823]])

    References
    ----------

    .. [10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016).
        Scaling algorithms for unbalanced transport problems. arXiv preprint arXiv:1607.05816.

    .. [25] Frogner C., Zhang C., Mobahi H., Araya-Polo M., Poggio T. :
        Learning with a Wasserstein Loss,  Advances in Neural Information
        Processing Systems (NIPS) 2015

    See Also
    --------
    ot.lp.emd : Unregularized OT
    ot.optim.cg : General regularized OT

    """

    a = np.asarray(a, dtype=np.float64)
    b = np.asarray(b, dtype=np.float64)
    M = np.asarray(M, dtype=np.float64)

    dim_a, dim_b = M.shape

    if len(a) == 0:
        a = np.ones(dim_a, dtype=np.float64) / dim_a
    if len(b) == 0:
        b = np.ones(dim_b, dtype=np.float64) / dim_b

    if len(b.shape) > 1:
        n_hists = b.shape[1]
    else:
        n_hists = 0

    if log:
        log = {'err': []}

    # we assume that no distances are null except those of the diagonal of
    # distances
    if n_hists:
        u = np.ones((dim_a, n_hists)) / dim_a
        v = np.ones((dim_b, n_hists)) / dim_b
        a = a.reshape(dim_a, 1)
    else:
        u = np.ones(dim_a) / dim_a
        v = np.ones(dim_b) / dim_b

    # print(reg)
    # Next 3 lines equivalent to K= np.exp(-M/reg), but faster to compute
    K = np.empty(M.shape, dtype=M.dtype)
    np.divide(M, -reg, out=K)
    np.exp(K, out=K)

    fi = reg_m / (reg_m + reg)

    cpt = 0
    err = 1.
    alpha = np.zeros(dim_a)
    beta = np.zeros(dim_b)
    while (err > stopThr and cpt < numItermax):
        uprev = u
        vprev = v

        Kv = K.dot(v)
        f_alpha = np.exp(- alpha / (reg + reg_m))
        f_beta = np.exp(- beta / (reg + reg_m))

        if n_hists:
            f_alpha = f_alpha[:, None]
            f_beta = f_beta[:, None]
        u = ((a / (Kv + 1e-16)) ** fi) * f_alpha
        Ktu = K.T.dot(u)
        v = ((b / (Ktu + 1e-16)) ** fi) * f_beta
        absorbing = False
        if (u > tau).any() or (v > tau).any():
            absorbing = True
            if n_hists:
                alpha = alpha + reg * np.log(np.max(u, 1))
                beta = beta + reg * np.log(np.max(v, 1))
            else:
                alpha = alpha + reg * np.log(np.max(u))
                beta = beta + reg * np.log(np.max(v))
            K = np.exp((alpha[:, None] + beta[None, :] -
                        M) / reg)
            v = np.ones_like(v)
        Kv = K.dot(v)

        if (np.any(Ktu == 0.)
                or np.any(np.isnan(u)) or np.any(np.isnan(v))
                or np.any(np.isinf(u)) or np.any(np.isinf(v))):
            # we have reached the machine precision
            # come back to previous solution and quit loop
            warnings.warn('Numerical errors at iteration %s' % cpt)
            u = uprev
            v = vprev
            break
        if (cpt % 10 == 0 and not absorbing) or cpt == 0:
            # we can speed up the process by checking for the error only all
            # the 10th iterations
            err = abs(u - uprev).max() / max(abs(u).max(), abs(uprev).max(),
                                             1.)
            if log:
                log['err'].append(err)
            if verbose:
                if cpt % 200 == 0:
                    print(
                        '{:5s}|{:12s}'.format('It.', 'Err') + '\n' + '-' * 19)
                print('{:5d}|{:8e}|'.format(cpt, err))
        cpt = cpt + 1

    if err > stopThr:
        warnings.warn("Stabilized Unbalanced Sinkhorn did not converge." +
                      "Try a larger entropy `reg` or a lower mass `reg_m`." +
                      "Or a larger absorption threshold `tau`.")
    if n_hists:
        logu = alpha[:, None] / reg + np.log(u)
        logv = beta[:, None] / reg + np.log(v)
    else:
        logu = alpha / reg + np.log(u)
        logv = beta / reg + np.log(v)
    if log:
        log['logu'] = logu
        log['logv'] = logv
    if n_hists:  # return only loss
        res = logsumexp(np.log(M + 1e-100)[:, :, None] + logu[:, None, :] +
                        logv[None, :, :] - M[:, :, None] / reg, axis=(0, 1))
        res = np.exp(res)
        if log:
            return res, log
        else:
            return res

    else:  # return OT matrix
        ot_matrix = np.exp(logu[:, None] + logv[None, :] - M / reg)
        if log:
            return ot_matrix, log
        else:
            return ot_matrix


def barycenter_unbalanced_stabilized(A, M, reg, reg_m, weights=None, tau=1e3,
                                     numItermax=1000, stopThr=1e-6,
                                     verbose=False, log=False):
    r"""Compute the entropic unbalanced wasserstein barycenter of A with stabilization.

     The function solves the following optimization problem:

    .. math::
       \mathbf{a} = arg\min_\mathbf{a} \sum_i Wu_{reg}(\mathbf{a},\mathbf{a}_i)

    where :

    - :math:`Wu_{reg}(\cdot,\cdot)` is the unbalanced entropic regularized
        Wasserstein distance (see ot.unbalanced.sinkhorn_unbalanced)
    - :math:`\mathbf{a}_i` are training distributions in the columns of
        matrix :math:`\mathbf{A}`
    - reg and :math:`\mathbf{M}` are respectively the regularization term and
        the cost matrix for OT
    - reg_mis the marginal relaxation hyperparameter
        The algorithm used for solving the problem is the generalized
        Sinkhorn-Knopp matrix scaling algorithm as proposed in [10]_

    Parameters
    ----------
    A : np.ndarray (dim, n_hists)
        `n_hists` training distributions a_i of dimension dim
    M : np.ndarray (dim, dim)
        ground metric matrix for OT.
    reg : float
        Entropy regularization term > 0
    reg_m : float
        Marginal relaxation term > 0
    tau : float
        Stabilization threshold for log domain absorption.
    weights : np.ndarray (n_hists,) optional
        Weight of each distribution (barycentric coodinates)
        If None, uniform weights are used.
    numItermax : int, optional
        Max number of iterations
    stopThr : float, optional
        Stop threshol on error (> 0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        record log if True


    Returns
    -------
    a : (dim,) ndarray
        Unbalanced Wasserstein barycenter
    log : dict
        log dictionary return only if log==True in parameters


    References
    ----------

    .. [3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré,
        G. (2015). Iterative Bregman projections for regularized transportation
        problems. SIAM Journal on Scientific Computing, 37(2), A1111-A1138.
    .. [10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016).
        Scaling algorithms for unbalanced transport problems. arXiv preprint
        arXiv:1607.05816.


    """
    dim, n_hists = A.shape
    if weights is None:
        weights = np.ones(n_hists) / n_hists
    else:
        assert(len(weights) == A.shape[1])

    if log:
        log = {'err': []}

    fi = reg_m / (reg_m + reg)

    u = np.ones((dim, n_hists)) / dim
    v = np.ones((dim, n_hists)) / dim

    # print(reg)
    # Next 3 lines equivalent to K= np.exp(-M/reg), but faster to compute
    K = np.empty(M.shape, dtype=M.dtype)
    np.divide(M, -reg, out=K)
    np.exp(K, out=K)

    fi = reg_m / (reg_m + reg)

    cpt = 0
    err = 1.
    alpha = np.zeros(dim)
    beta = np.zeros(dim)
    q = np.ones(dim) / dim
    while (err > stopThr and cpt < numItermax):
        qprev = q
        Kv = K.dot(v)
        f_alpha = np.exp(- alpha / (reg + reg_m))
        f_beta = np.exp(- beta / (reg + reg_m))
        f_alpha = f_alpha[:, None]
        f_beta = f_beta[:, None]
        u = ((A / (Kv + 1e-16)) ** fi) * f_alpha
        Ktu = K.T.dot(u)
        q = (Ktu ** (1 - fi)) * f_beta
        q = q.dot(weights) ** (1 / (1 - fi))
        Q = q[:, None]
        v = ((Q / (Ktu + 1e-16)) ** fi) * f_beta
        absorbing = False
        if (u > tau).any() or (v > tau).any():
            absorbing = True
            alpha = alpha + reg * np.log(np.max(u, 1))
            beta = beta + reg * np.log(np.max(v, 1))
            K = np.exp((alpha[:, None] + beta[None, :] -
                        M) / reg)
            v = np.ones_like(v)
        Kv = K.dot(v)
        if (np.any(Ktu == 0.)
                or np.any(np.isnan(u)) or np.any(np.isnan(v))
                or np.any(np.isinf(u)) or np.any(np.isinf(v))):
            # we have reached the machine precision
            # come back to previous solution and quit loop
            warnings.warn('Numerical errors at iteration %s' % cpt)
            q = qprev
            break
        if (cpt % 10 == 0 and not absorbing) or cpt == 0:
            # we can speed up the process by checking for the error only all
            # the 10th iterations
            err = abs(q - qprev).max() / max(abs(q).max(),
                                             abs(qprev).max(), 1.)
            if log:
                log['err'].append(err)
            if verbose:
                if cpt % 50 == 0:
                    print(
                        '{:5s}|{:12s}'.format('It.', 'Err') + '\n' + '-' * 19)
                print('{:5d}|{:8e}|'.format(cpt, err))

        cpt += 1
    if err > stopThr:
        warnings.warn("Stabilized Unbalanced Sinkhorn did not converge." +
                      "Try a larger entropy `reg` or a lower mass `reg_m`." +
                      "Or a larger absorption threshold `tau`.")
    if log:
        log['niter'] = cpt
        log['logu'] = np.log(u + 1e-16)
        log['logv'] = np.log(v + 1e-16)
        return q, log
    else:
        return q


def barycenter_unbalanced_sinkhorn(A, M, reg, reg_m, weights=None,
                                   numItermax=1000, stopThr=1e-6,
                                   verbose=False, log=False):
    r"""Compute the entropic unbalanced wasserstein barycenter of A.

     The function solves the following optimization problem with a

    .. math::
       \mathbf{a} = arg\min_\mathbf{a} \sum_i Wu_{reg}(\mathbf{a},\mathbf{a}_i)

    where :

    - :math:`Wu_{reg}(\cdot,\cdot)` is the unbalanced entropic regularized
    Wasserstein distance (see ot.unbalanced.sinkhorn_unbalanced)
    - :math:`\mathbf{a}_i` are training distributions in the columns of matrix
    :math:`\mathbf{A}`
    - reg and :math:`\mathbf{M}` are respectively the regularization term and
    the cost matrix for OT
    - reg_mis the marginal relaxation hyperparameter
    The algorithm used for solving the problem is the generalized
    Sinkhorn-Knopp matrix scaling algorithm as proposed in [10]_

    Parameters
    ----------
    A : np.ndarray (dim, n_hists)
        `n_hists` training distributions a_i of dimension dim
    M : np.ndarray (dim, dim)
        ground metric matrix for OT.
    reg : float
        Entropy regularization term > 0
    reg_m: float
        Marginal relaxation term > 0
    weights : np.ndarray (n_hists,) optional
        Weight of each distribution (barycentric coodinates)
        If None, uniform weights are used.
    numItermax : int, optional
        Max number of iterations
    stopThr : float, optional
        Stop threshol on error (> 0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        record log if True


    Returns
    -------
    a : (dim,) ndarray
        Unbalanced Wasserstein barycenter
    log : dict
        log dictionary return only if log==True in parameters


    References
    ----------

    .. [3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G.
        (2015). Iterative Bregman projections for regularized transportation
        problems. SIAM Journal on Scientific Computing, 37(2), A1111-A1138.
    .. [10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016).
        Scaling algorithms for unbalanced transport problems. arXiv preprin
        arXiv:1607.05816.


    """
    dim, n_hists = A.shape
    if weights is None:
        weights = np.ones(n_hists) / n_hists
    else:
        assert(len(weights) == A.shape[1])

    if log:
        log = {'err': []}

    K = np.exp(- M / reg)

    fi = reg_m / (reg_m + reg)

    v = np.ones((dim, n_hists)) / dim
    u = np.ones((dim, 1)) / dim

    cpt = 0
    err = 1.

    while (err > stopThr and cpt < numItermax):
        uprev = u
        vprev = v

        Kv = K.dot(v)
        u = (A / Kv) ** fi
        Ktu = K.T.dot(u)
        q = ((Ktu ** (1 - fi)).dot(weights))
        q = q ** (1 / (1 - fi))
        Q = q[:, None]
        v = (Q / Ktu) ** fi

        if (np.any(Ktu == 0.)
                or np.any(np.isnan(u)) or np.any(np.isnan(v))
                or np.any(np.isinf(u)) or np.any(np.isinf(v))):
            # we have reached the machine precision
            # come back to previous solution and quit loop
            warnings.warn('Numerical errors at iteration %s' % cpt)
            u = uprev
            v = vprev
            break
        if cpt % 10 == 0:
            # we can speed up the process by checking for the error only all
            # the 10th iterations
            err_u = abs(u - uprev).max()
            err_u /= max(abs(u).max(), abs(uprev).max(), 1.)
            err_v = abs(v - vprev).max()
            err_v /= max(abs(v).max(), abs(vprev).max(), 1.)
            err = 0.5 * (err_u + err_v)
            if log:
                log['err'].append(err)
            if verbose:
                if cpt % 50 == 0:
                    print(
                        '{:5s}|{:12s}'.format('It.', 'Err') + '\n' + '-' * 19)
                print('{:5d}|{:8e}|'.format(cpt, err))

    cpt += 1
    if log:
        log['niter'] = cpt
        log['logu'] = np.log(u + 1e-16)
        log['logv'] = np.log(v + 1e-16)
        return q, log
    else:
        return q


def barycenter_unbalanced(A, M, reg, reg_m, method="sinkhorn", weights=None,
                          numItermax=1000, stopThr=1e-6,
                          verbose=False, log=False, **kwargs):
    r"""Compute the entropic unbalanced wasserstein barycenter of A.

     The function solves the following optimization problem with a

    .. math::
       \mathbf{a} = arg\min_\mathbf{a} \sum_i Wu_{reg}(\mathbf{a},\mathbf{a}_i)

    where :

    - :math:`Wu_{reg}(\cdot,\cdot)` is the unbalanced entropic regularized
    Wasserstein distance (see ot.unbalanced.sinkhorn_unbalanced)
    - :math:`\mathbf{a}_i` are training distributions in the columns of matrix
    :math:`\mathbf{A}`
    - reg and :math:`\mathbf{M}` are respectively the regularization term and
    the cost matrix for OT
    - reg_mis the marginal relaxation hyperparameter
    The algorithm used for solving the problem is the generalized
    Sinkhorn-Knopp matrix scaling algorithm as proposed in [10]_

    Parameters
    ----------
    A : np.ndarray (dim, n_hists)
        `n_hists` training distributions a_i of dimension dim
    M : np.ndarray (dim, dim)
        ground metric matrix for OT.
    reg : float
        Entropy regularization term > 0
    reg_m: float
        Marginal relaxation term > 0
    weights : np.ndarray (n_hists,) optional
        Weight of each distribution (barycentric coodinates)
        If None, uniform weights are used.
    numItermax : int, optional
        Max number of iterations
    stopThr : float, optional
        Stop threshol on error (> 0)
    verbose : bool, optional
        Print information along iterations
    log : bool, optional
        record log if True


    Returns
    -------
    a : (dim,) ndarray
        Unbalanced Wasserstein barycenter
    log : dict
        log dictionary return only if log==True in parameters


    References
    ----------

    .. [3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G.
        (2015). Iterative Bregman projections for regularized transportation
        problems. SIAM Journal on Scientific Computing, 37(2), A1111-A1138.
    .. [10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016).
        Scaling algorithms for unbalanced transport problems. arXiv preprin
        arXiv:1607.05816.

    """

    if method.lower() == 'sinkhorn':
        return barycenter_unbalanced_sinkhorn(A, M, reg, reg_m,
                                              numItermax=numItermax,
                                              stopThr=stopThr, verbose=verbose,
                                              log=log, **kwargs)

    elif method.lower() == 'sinkhorn_stabilized':
        return barycenter_unbalanced_stabilized(A, M, reg, reg_m,
                                                numItermax=numItermax,
                                                stopThr=stopThr,
                                                verbose=verbose,
                                                log=log, **kwargs)
    elif method.lower() in ['sinkhorn_reg_scaling']:
        warnings.warn('Method not implemented yet. Using classic Sinkhorn Knopp')
        return barycenter_unbalanced(A, M, reg, reg_m,
                                     numItermax=numItermax,
                                     stopThr=stopThr, verbose=verbose,
                                     log=log, **kwargs)
    else:
        raise ValueError("Unknown method '%s'." % method)