summaryrefslogtreecommitdiff
path: root/test/test_bregman.py
blob: aaa2efcc2295158b46397f01848256c15623c85e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import numpy as np
import ot


# import pytest


def test_sinkhorn():
    # test sinkhorn
    n = 100
    np.random.seed(0)

    x = np.random.randn(n, 2)
    u = ot.utils.unif(n)

    M = ot.dist(x, x)

    G = ot.sinkhorn(u, u, M, 1, stopThr=1e-10)

    # check constratints
    assert np.allclose(u, G.sum(1), atol=1e-05)  # cf convergence sinkhorn
    assert np.allclose(u, G.sum(0), atol=1e-05)  # cf convergence sinkhorn


def test_sinkhorn_empty():
    # test sinkhorn
    n = 100
    np.random.seed(0)

    x = np.random.randn(n, 2)
    u = ot.utils.unif(n)

    M = ot.dist(x, x)

    G, log = ot.sinkhorn([], [], M, 1, stopThr=1e-10, verbose=True, log=True)
    # check constratints
    assert np.allclose(u, G.sum(1), atol=1e-05)  # cf convergence sinkhorn
    assert np.allclose(u, G.sum(0), atol=1e-05)  # cf convergence sinkhorn

    G, log = ot.sinkhorn([], [], M, 1, stopThr=1e-10,
                         method='sinkhorn_stabilized', verbose=True, log=True)
    # check constratints
    assert np.allclose(u, G.sum(1), atol=1e-05)  # cf convergence sinkhorn
    assert np.allclose(u, G.sum(0), atol=1e-05)  # cf convergence sinkhorn

    G, log = ot.sinkhorn(
        [], [], M, 1, stopThr=1e-10, method='sinkhorn_epsilon_scaling',
        verbose=True, log=True)
    # check constratints
    assert np.allclose(u, G.sum(1), atol=1e-05)  # cf convergence sinkhorn
    assert np.allclose(u, G.sum(0), atol=1e-05)  # cf convergence sinkhorn


def test_sinkhorn_variants():
    # test sinkhorn
    n = 100
    np.random.seed(0)

    x = np.random.randn(n, 2)
    u = ot.utils.unif(n)

    M = ot.dist(x, x)

    G0 = ot.sinkhorn(u, u, M, 1, method='sinkhorn', stopThr=1e-10)
    Gs = ot.sinkhorn(u, u, M, 1, method='sinkhorn_stabilized', stopThr=1e-10)
    Ges = ot.sinkhorn(
        u, u, M, 1, method='sinkhorn_epsilon_scaling', stopThr=1e-10)
    Gerr = ot.sinkhorn(u, u, M, 1, method='do_not_exists', stopThr=1e-10)

    # check values
    assert np.allclose(G0, Gs, atol=1e-05)
    assert np.allclose(G0, Ges, atol=1e-05)
    assert np.allclose(G0, Gerr)


def test_bary():

    n = 100  # nb bins

    # Gaussian distributions
    a1 = ot.datasets.get_1D_gauss(n, m=30, s=10)  # m= mean, s= std
    a2 = ot.datasets.get_1D_gauss(n, m=40, s=10)

    # creating matrix A containing all distributions
    A = np.vstack((a1, a2)).T

    # loss matrix + normalization
    M = ot.utils.dist0(n)
    M /= M.max()

    alpha = 0.5  # 0<=alpha<=1
    weights = np.array([1 - alpha, alpha])

    # wasserstein
    reg = 1e-3
    bary_wass = ot.bregman.barycenter(A, M, reg, weights)

    assert np.allclose(1, np.sum(bary_wass))

    ot.bregman.barycenter(A, M, reg, log=True, verbose=True)


def test_unmix():

    n = 50  # nb bins

    # Gaussian distributions
    a1 = ot.datasets.get_1D_gauss(n, m=20, s=10)  # m= mean, s= std
    a2 = ot.datasets.get_1D_gauss(n, m=40, s=10)

    a = ot.datasets.get_1D_gauss(n, m=30, s=10)

    # creating matrix A containing all distributions
    D = np.vstack((a1, a2)).T

    # loss matrix + normalization
    M = ot.utils.dist0(n)
    M /= M.max()

    M0 = ot.utils.dist0(2)
    M0 /= M0.max()
    h0 = ot.unif(2)

    # wasserstein
    reg = 1e-3
    um = ot.bregman.unmix(a, D, M, M0, h0, reg, 1, alpha=0.01,)

    assert np.allclose(1, np.sum(um), rtol=1e-03, atol=1e-03)
    assert np.allclose([0.5, 0.5], um, rtol=1e-03, atol=1e-03)

    ot.bregman.unmix(a, D, M, M0, h0, reg,
                     1, alpha=0.01, log=True, verbose=True)