summaryrefslogtreecommitdiff
path: root/test/test_da.py
blob: 33b36957d7c5aa8f1351e097b1b5e98b41f5d6c7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
"""Tests for module da on Domain Adaptation """

# Author: Remi Flamary <remi.flamary@unice.fr>
#
# License: MIT License

import numpy as np
import ot
from numpy.testing.utils import assert_allclose, assert_equal
from ot.datasets import get_data_classif
from ot.utils import unif

np.random.seed(42)


def test_sinkhorn_transport_class():
    """test_sinkhorn_transport
    """

    ns = 150
    nt = 200

    Xs, ys = get_data_classif('3gauss', ns)
    Xt, yt = get_data_classif('3gauss2', nt)

    clf = ot.da.SinkhornTransport()

    # test its computed
    clf.fit(Xs=Xs, Xt=Xt)

    # test dimensions of coupling
    assert_equal(clf.Cost.shape, ((Xs.shape[0], Xt.shape[0])))
    assert_equal(clf.Coupling_.shape, ((Xs.shape[0], Xt.shape[0])))

    # test margin constraints
    mu_s = unif(ns)
    mu_t = unif(nt)
    assert_allclose(np.sum(clf.Coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
    assert_allclose(np.sum(clf.Coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)

    # test transform
    transp_Xs = clf.transform(Xs=Xs)
    assert_equal(transp_Xs.shape, Xs.shape)

    Xs_new, _ = get_data_classif('3gauss', ns + 1)
    transp_Xs_new = clf.transform(Xs_new)

    # check that the oos method is not working
    assert_equal(transp_Xs_new, Xs_new)

    # test inverse transform
    transp_Xt = clf.inverse_transform(Xt=Xt)
    assert_equal(transp_Xt.shape, Xt.shape)

    Xt_new, _ = get_data_classif('3gauss2', nt + 1)
    transp_Xt_new = clf.inverse_transform(Xt=Xt_new)

    # check that the oos method is not working and returns the input data
    assert_equal(transp_Xt_new, Xt_new)


def test_emd_transport_class():
    """test_sinkhorn_transport
    """

    ns = 150
    nt = 200

    Xs, ys = get_data_classif('3gauss', ns)
    Xt, yt = get_data_classif('3gauss2', nt)

    clf = ot.da.EMDTransport()

    # test its computed
    clf.fit(Xs=Xs, Xt=Xt)

    # test dimensions of coupling
    assert_equal(clf.Cost.shape, ((Xs.shape[0], Xt.shape[0])))
    assert_equal(clf.Coupling_.shape, ((Xs.shape[0], Xt.shape[0])))

    # test margin constraints
    mu_s = unif(ns)
    mu_t = unif(nt)
    assert_allclose(np.sum(clf.Coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
    assert_allclose(np.sum(clf.Coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)

    # test transform
    transp_Xs = clf.transform(Xs=Xs)
    assert_equal(transp_Xs.shape, Xs.shape)

    Xs_new, _ = get_data_classif('3gauss', ns + 1)
    transp_Xs_new = clf.transform(Xs_new)

    # check that the oos method is not working
    assert_equal(transp_Xs_new, Xs_new)

    # test inverse transform
    transp_Xt = clf.inverse_transform(Xt=Xt)
    assert_equal(transp_Xt.shape, Xt.shape)

    Xt_new, _ = get_data_classif('3gauss2', nt + 1)
    transp_Xt_new = clf.inverse_transform(Xt=Xt_new)

    # check that the oos method is not working and returns the input data
    assert_equal(transp_Xt_new, Xt_new)


def test_otda():

    n_samples = 150  # nb samples
    np.random.seed(0)

    xs, ys = ot.datasets.get_data_classif('3gauss', n_samples)
    xt, yt = ot.datasets.get_data_classif('3gauss2', n_samples)

    a, b = ot.unif(n_samples), ot.unif(n_samples)

    # LP problem
    da_emd = ot.da.OTDA()     # init class
    da_emd.fit(xs, xt)       # fit distributions
    da_emd.interp()    # interpolation of source samples
    da_emd.predict(xs)    # interpolation of source samples

    np.testing.assert_allclose(a, np.sum(da_emd.G, 1))
    np.testing.assert_allclose(b, np.sum(da_emd.G, 0))

    # sinkhorn regularization
    lambd = 1e-1
    da_entrop = ot.da.OTDA_sinkhorn()
    da_entrop.fit(xs, xt, reg=lambd)
    da_entrop.interp()
    da_entrop.predict(xs)

    np.testing.assert_allclose(a, np.sum(da_entrop.G, 1), rtol=1e-3, atol=1e-3)
    np.testing.assert_allclose(b, np.sum(da_entrop.G, 0), rtol=1e-3, atol=1e-3)

    # non-convex Group lasso regularization
    reg = 1e-1
    eta = 1e0
    da_lpl1 = ot.da.OTDA_lpl1()
    da_lpl1.fit(xs, ys, xt, reg=reg, eta=eta)
    da_lpl1.interp()
    da_lpl1.predict(xs)

    np.testing.assert_allclose(a, np.sum(da_lpl1.G, 1), rtol=1e-3, atol=1e-3)
    np.testing.assert_allclose(b, np.sum(da_lpl1.G, 0), rtol=1e-3, atol=1e-3)

    # True Group lasso regularization
    reg = 1e-1
    eta = 2e0
    da_l1l2 = ot.da.OTDA_l1l2()
    da_l1l2.fit(xs, ys, xt, reg=reg, eta=eta, numItermax=20, verbose=True)
    da_l1l2.interp()
    da_l1l2.predict(xs)

    np.testing.assert_allclose(a, np.sum(da_l1l2.G, 1), rtol=1e-3, atol=1e-3)
    np.testing.assert_allclose(b, np.sum(da_l1l2.G, 0), rtol=1e-3, atol=1e-3)

    # linear mapping
    da_emd = ot.da.OTDA_mapping_linear()     # init class
    da_emd.fit(xs, xt, numItermax=10)       # fit distributions
    da_emd.predict(xs)    # interpolation of source samples

    # nonlinear mapping
    da_emd = ot.da.OTDA_mapping_kernel()     # init class
    da_emd.fit(xs, xt, numItermax=10)       # fit distributions
    da_emd.predict(xs)    # interpolation of source samples


if __name__ == "__main__":
    test_sinkhorn_transport_class()
    test_emd_transport_class()