summaryrefslogtreecommitdiff
path: root/test/test_gromov.py
blob: d865380be4ea72f8ba43eac4e7716ab4e637d840 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
"""Tests for module gromov  """

# Author: Erwan Vautier <erwan.vautier@gmail.com>
#         Nicolas Courty <ncourty@irisa.fr>
#
# License: MIT License

import numpy as np
import ot


def test_gromov():
    n_samples = 50  # nb samples

    mu_s = np.array([0, 0])
    cov_s = np.array([[1, 0], [0, 1]])

    xs = ot.datasets.get_2D_samples_gauss(n_samples, mu_s, cov_s)

    xt = xs[::-1].copy()

    p = ot.unif(n_samples)
    q = ot.unif(n_samples)

    C1 = ot.dist(xs, xs)
    C2 = ot.dist(xt, xt)

    C1 /= C1.max()
    C2 /= C2.max()

    G = ot.gromov.gromov_wasserstein(C1, C2, p, q, 'square_loss')

    # check constratints
    np.testing.assert_allclose(
        p, G.sum(1), atol=1e-04)  # cf convergence gromov
    np.testing.assert_allclose(
        q, G.sum(0), atol=1e-04)  # cf convergence gromov

    gw, log = ot.gromov.gromov_wasserstein2(C1, C2, p, q, 'kl_loss', log=True)

    G = log['T']

    np.testing.assert_allclose(gw, 0, atol=1e-1, rtol=1e-1)

    # check constratints
    np.testing.assert_allclose(
        p, G.sum(1), atol=1e-04)  # cf convergence gromov
    np.testing.assert_allclose(
        q, G.sum(0), atol=1e-04)  # cf convergence gromov


def test_entropic_gromov():
    n_samples = 50  # nb samples

    mu_s = np.array([0, 0])
    cov_s = np.array([[1, 0], [0, 1]])

    xs = ot.datasets.get_2D_samples_gauss(n_samples, mu_s, cov_s)

    xt = xs[::-1].copy()

    p = ot.unif(n_samples)
    q = ot.unif(n_samples)

    C1 = ot.dist(xs, xs)
    C2 = ot.dist(xt, xt)

    C1 /= C1.max()
    C2 /= C2.max()

    G = ot.gromov.entropic_gromov_wasserstein(
        C1, C2, p, q, 'square_loss', epsilon=5e-4)

    # check constratints
    np.testing.assert_allclose(
        p, G.sum(1), atol=1e-04)  # cf convergence gromov
    np.testing.assert_allclose(
        q, G.sum(0), atol=1e-04)  # cf convergence gromov

    gw, log = ot.gromov.entropic_gromov_wasserstein2(
        C1, C2, p, q, 'kl_loss', epsilon=1e-2, log=True)

    G = log['T']

    np.testing.assert_allclose(gw, 0, atol=1e-1, rtol=1e-1)

    # check constratints
    np.testing.assert_allclose(
        p, G.sum(1), atol=1e-04)  # cf convergence gromov
    np.testing.assert_allclose(
        q, G.sum(0), atol=1e-04)  # cf convergence gromov


def test_gromov_barycenter():

    ns = 50
    nt = 60

    Xs, ys = ot.datasets.get_data_classif('3gauss', ns)
    Xt, yt = ot.datasets.get_data_classif('3gauss2', nt)

    C1 = ot.dist(Xs)
    C2 = ot.dist(Xt)

    n_samples = 3
    Cb = ot.gromov.gromov_barycenters(n_samples, [C1, C2],
                                      [ot.unif(ns), ot.unif(nt)
                                       ], ot.unif(n_samples), [.5, .5],
                                      'square_loss',  # 5e-4,
                                      max_iter=100, tol=1e-3)
    np.testing.assert_allclose(Cb.shape, (n_samples, n_samples))

    Cb2 = ot.gromov.gromov_barycenters(n_samples, [C1, C2],
                                       [ot.unif(ns), ot.unif(nt)
                                        ], ot.unif(n_samples), [.5, .5],
                                       'kl_loss',  # 5e-4,
                                       max_iter=100, tol=1e-3)
    np.testing.assert_allclose(Cb2.shape, (n_samples, n_samples))