summaryrefslogtreecommitdiff
path: root/test/test_optim.py
blob: 94995d56dfec586e2ab9795da59610da063da680 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
"""Tests for module optim fro OT optimization """

# Author: Remi Flamary <remi.flamary@unice.fr>
#
# License: MIT License

import numpy as np
import ot


def test_conditional_gradient():

    n_bins = 100  # nb bins
    np.random.seed(0)
    # bin positions
    x = np.arange(n_bins, dtype=np.float64)

    # Gaussian distributions
    a = ot.datasets.make_1D_gauss(n_bins, m=20, s=5)  # m= mean, s= std
    b = ot.datasets.make_1D_gauss(n_bins, m=60, s=10)

    # loss matrix
    M = ot.dist(x.reshape((n_bins, 1)), x.reshape((n_bins, 1)))
    M /= M.max()

    def f(G):
        return 0.5 * np.sum(G**2)

    def df(G):
        return G

    reg = 1e-1

    G, log = ot.optim.cg(a, b, M, reg, f, df, verbose=True, log=True)

    np.testing.assert_allclose(a, G.sum(1))
    np.testing.assert_allclose(b, G.sum(0))


def test_conditional_gradient_itermax():
    n = 100  # nb samples

    mu_s = np.array([0, 0])
    cov_s = np.array([[1, 0], [0, 1]])

    mu_t = np.array([4, 4])
    cov_t = np.array([[1, -.8], [-.8, 1]])

    xs = ot.datasets.make_2D_samples_gauss(n, mu_s, cov_s)
    xt = ot.datasets.make_2D_samples_gauss(n, mu_t, cov_t)

    a, b = np.ones((n,)) / n, np.ones((n,)) / n

    # loss matrix
    M = ot.dist(xs, xt)
    M /= M.max()

    def f(G):
        return 0.5 * np.sum(G**2)

    def df(G):
        return G

    reg = 1e-1

    G, log = ot.optim.cg(a, b, M, reg, f, df, numItermaxEmd=10000,
                         verbose=True, log=True)

    np.testing.assert_allclose(a, G.sum(1))
    np.testing.assert_allclose(b, G.sum(0))


def test_generalized_conditional_gradient():

    n_bins = 100  # nb bins
    np.random.seed(0)
    # bin positions
    x = np.arange(n_bins, dtype=np.float64)

    # Gaussian distributions
    a = ot.datasets.make_1D_gauss(n_bins, m=20, s=5)  # m= mean, s= std
    b = ot.datasets.make_1D_gauss(n_bins, m=60, s=10)

    # loss matrix
    M = ot.dist(x.reshape((n_bins, 1)), x.reshape((n_bins, 1)))
    M /= M.max()

    def f(G):
        return 0.5 * np.sum(G**2)

    def df(G):
        return G

    reg1 = 1e-3
    reg2 = 1e-1

    G, log = ot.optim.gcg(a, b, M, reg1, reg2, f, df, verbose=True, log=True)

    np.testing.assert_allclose(a, G.sum(1), atol=1e-05)
    np.testing.assert_allclose(b, G.sum(0), atol=1e-05)


def test_solve_1d_linesearch_quad_funct():
    np.testing.assert_allclose(ot.optim.solve_1d_linesearch_quad(1, -1, 0), 0.5)
    np.testing.assert_allclose(ot.optim.solve_1d_linesearch_quad(-1, 5, 0), 0)
    np.testing.assert_allclose(ot.optim.solve_1d_linesearch_quad(-1, 0.5, 0), 1)


def test_line_search_armijo():
    xk = np.array([[0.25, 0.25], [0.25, 0.25]])
    pk = np.array([[-0.25, 0.25], [0.25, -0.25]])
    gfk = np.array([[23.04273441, 23.0449082], [23.04273441, 23.0449082]])
    old_fval = -123
    # Should not throw an exception and return None for alpha
    alpha, _, _ = ot.optim.line_search_armijo(lambda x: 1, xk, pk, gfk, old_fval)
    assert alpha is None

    # check line search armijo
    def f(x):
        return np.sum((x - 5.0) ** 2)

    def grad(x):
        return 2 * (x - 5.0)

    xk = np.array([[[-5.0, -5.0]]])
    pk = np.array([[[100.0, 100.0]]])
    gfk = grad(xk)
    old_fval = f(xk)

    # chech the case where the optimum is on the direction
    alpha, _, _ = ot.optim.line_search_armijo(f, xk, pk, gfk, old_fval)
    np.testing.assert_allclose(alpha, 0.1)

    # check the case where the direction is not far enough
    pk = np.array([[[3.0, 3.0]]])
    alpha, _, _ = ot.optim.line_search_armijo(f, xk, pk, gfk, old_fval, alpha0=1.0)
    np.testing.assert_allclose(alpha, 1.0)

    # check the case where the checking the wrong direction
    alpha, _, _ = ot.optim.line_search_armijo(f, xk, -pk, gfk, old_fval)
    assert alpha <= 0